

CHAPTER 1

CONTENTS

Para.

Polar diagrams and D/F ratios 6
Aerial systems, general constructional details-
Azimuth receiving

12
Control panel, type 3 13
Control panel, constructional details 16
Modulator, type 20 18
Priming pulse generator 20
Pulse generating stage 24
Output to anodes of transmitter valves 31
Output to grids of transmitter valves 32
Output to receiver and indicating unit 33
L.T. supply 34
H.T. supply 35

Modulator, constructional details 36
Transmitters, types T.3065, T.3065A and T.3065B 39
Receivers 45
Receiver, type R.3066-
Receiving unit, type 26 46
Power unit, type 77 50
Receiver, type R.3066, constructional details 51
Receiving unit, type 26 53
Power unit 61
Receiver, type R.3102A, constructional details 62
Switch units63

Switch unit, type 3965
Notes on cathode followers69
Interception range
Indicating units, constructional details 74
ndications80
Colour identification 84
Connectors 86

S.D. 0165 (1), CHAP. 1

CHAPTER 1

A.I. MK. IV AND ANCILLARY EQUIPMENT

INTRODUCTION

1. The equipment described in this document is installed in aeroplanes and has as its purpose the detection of other aeroplanes in flight. Electro-magnetic energy from a transmitter, in the form of high-power pulses of short duration, is radiated from an aerial mounted in the fuselage nose of the searching aeroplane and these pulses are reflected and re-radiated by objects. Returned signals are picked up on two sets of aerials, namely, azimuth and elevation and the voltages induced in them are applied in turn to a receiver where they are amplified and rectified. The resulting voltage pulses are applied to two deflection plates in each of two cathode ray tubes to give indications on their screens. The time between the transmission of a signal pulse and the receipt of the returned signal is used as a measure of the distance of the object from the searching aeroplane. The time interval is measured by means of an exponential scan voltage, triggered off at the same time as the transmitted pulse, and applied to a plate in each cathode ray tube at right angles to those mentioned above. The frequency of the transmitter signals is $193 \mathrm{Mc} / \mathrm{s}$ and the pulse recurs at intervals of about 1,200 microseconds, the pulse width being about $2 \cdot 8$ microseconds.
2. The following is a brief outline of the function of the various items of the equipment :-
(i) Generator, A.C.-This is engine-driven and its 80 -volt output is fed to the control panel, type 3. Type R is fitted to aeroplanes manufactured in this country, type S to those of American manufacture.
(ii) Control panel, type 3.-This includes a voltage regulator for controlling the output from the A.C. generator. It also acts as a junction box for the A.C. supply from the above generator and aeroplane D.C. supply.
(iii) Modulator.-From this unit are obtained the H.T. pulses for the transmitter, timing pulses for triggering the indicating unit time base, and for suppression purposes for the receiver and I.F.F. set (see S.D. 0210 (1), S.D. 0250 (1)).
(iv) Transmitter.-For the duration of the H.T. pulses from the modulator, the transmitter oscillates at a frequency of $193 \pm 1 \mathrm{Mc} / \mathrm{s}$. The output from the transmitter is fed to the transmitter aerial, which radiates the R.F. pulses.
(v) Receiver.-Signals from the four receiving aerials, by means of a switch, are fed in rotation into the receiving unit, where they are converted into video-frequency pulses. These are fed in rotation along four cables to the indicating unit.
(vi) Indicating unit.-The output from the receiver is fed to the appropriate plates of the two cathode ray tubes in this unit, which also incorporates the time base unit supplying the scanning voltage.

GENERAL DESCRIPTION

3. In this description the transmitter and receiver aerials are covered first, followed by descriptions of the individual items of equipment, namely, A.C. generator, control panel, modulator, transmitter, receiver and indicating unit (see fig. 2). For convenience, the constructional details of each item of equipment are given after the theoretical description. It should be noted that further types of receiver and indicating units have been developed; in the new receiver, type R. 3102A, acorn valves are no longer used; in both this receiver and the new indicating unit, type 48A, the mechanical layout is an improvement on the earlier units. The indicating unit, type 20 has been modified to type 48 to enable the cathode ray tube V.C.R. 138 to be used. All indicator units now carry beacon range switches and time base amplitude controls. Perspex scales are fitted to the indicating unit, type 48A, for the screens of the cathode ray tubes.

TABLE OF WEIGHTS AND DIMENSIONS

Item	Weight	Length	Width	Depth
Control panel, type 3	20 lb .	14 in.	8 in.	9 in.
Receiver, type R. 3066	37 lb .	22 in.	131 $\frac{1}{4}$ in.	9 in.
Transmitter, type T. 3065 (including tray).	19 lb	22 in.	8 in.	$10 \frac{1}{2} \mathrm{in}$.
Modulator, type 20 .	$25 \frac{1}{2} 1 \mathrm{~b}$.	12 in.	9 in.	12 in.
Indicator units, type 20, 48, 48A	$16 \frac{1}{2} \mathrm{lb}$.	17 in. mask extra 9 in.	16 in.	5 in.
Connectors..	Approx. 50/70 lb. (e.g., Havoc, 53 lb. ; Beaufighter, 70 lb.)			

Aerial systems

4. The transmitting aerials are designed to produce a maximum radiation in front of the aeroplane, with as little as possible to the rear, in order to avoid ambiguous indications. In the case of the receiving aerials, their location on the aeroplane and their design is such that the voltages induced in them by the return signal will enable the position of the detected aeroplane relative to the search aeroplane to be determined, that is, whether it is to port or starboard and above or below the line of flight. Reference to fig. 1 (b) will show how the polar properties of the receiving aerials are used to provide direction-finding indications. The curves show the voltages that will be induced in each of the two azimuth receiving aerials by a signal of given amplitude reaching them from various directions. For example, a signal pulse re-radiated from an object and arriving in the direction ABO will induce a voltage proportional to AO in the port aerial and a voltage proportional to BO in the starboard aerial. The corresponding indications on the cathode ray tube are proportional to these induced voltages, thus providing the operator with information on the position of the detected object relative to the searching aeroplane. In the case where the object lies directly ahead, in the direction CO in fig. 1 (b), the indications will be equal. Vertically polarized waves are used, as it has been found that satisfactory results are obtained more easily for azimuth indications with vertical aerials fitted to the aeroplane. Vertically polarized waves also assist interrogation with I.F.F. Mk. III (see S.D. 0250 (1)). On the other hand, horizontal elevation aerials are more efficient electrically ; hence, in certain aeroplanes it is possible that horizontally polarized waves will be used.

FIG. 2

S.D. 0165 (1), CHAP. 1

Fig. 3.-Transmitting aerial system.
Fig. 4.-Havoc turbinlite transmitting aerial systems.

Fig. 5.-Starboard azimuth receiving aerial system on Havoc aeroplane.
5. The details of the aerial systems vary from one type of aeroplane to another, no two types having identical polar diagrams, although in general the form will be as shown in fig. 1.
6. Polar diagrams and D / F ratios.-The polar diagrams obtained are a practical compromise between the following conflicting requirements:-
(i) Maximum possible range.
(ii) Maximum cone in which interception is possible.
(iii) Maximum D/F ratio at all angles other than dead ahead.
(iv) Front-to-back ratio to be very large.
7. The magnitude of the signal received by an aerial is proportional to the product of the sensitivities of the receiving aerial and the transmitting aerial in the direction under consideration. In practice, the following results are usually obtained :-
(i) Transmitting aerials.-A cone in front of the aeroplane is "illuminated" with radiation, the half-angle of the cone being about 60 deg . ; the maximum intensity of the cone is dead ahead, and outside the $60-\mathrm{deg}$. cone the radiation decreases rapidly.
(ii) Azimuth receiving aerials.-The D / F ratio is at least $3: 1$ at 30 deg . off course, with the target level with the aeroplane. The ratio increases to about $6: 1$ at 80 deg . measured horizontally to the line of flight. Beyond this angle the ratio increases, but the magnitude of the smaller signal is such that the ratio is difficult to estimate accurately. It is not intended, therefore, to be able to estimate angles greater than 60 deg. accurately. As a result of the spatial envelopes of the polar diagram curving in all directions the D / F ratios for targets above and below the aeroplane will vary from those where the target is on the horizontal.
(iii) Elevation receiving aerials.-The D/F ratios obtained up to 60 deg. are similar to those obtained for the azimuth aerials. For angles greater than 60 deg . the ratios will probably decrease and are not intended for operational use. In addition, the sensitivity of the aerials decreases beyond 60 deg.

Aerial systems, general constructional details

8. Transmitting aerial.-This consists of a folded dipole radiator mounted on an insulating bollard carried on a support tube, which usually projects forward from the nose of the fuselage (see fig. 3). In front of and parallel to the radiator is a director, which is welded to the same support tube. The director serves to further focus the field, that portion of the aeroplane behind the radiator acting as a reffector. Both elements are at an angle to the tube above and below the points of support.
9. In the case of Havoc aeroplanes fitted with turbinlites in the nose of the fuselage, it has been necessary to fit two parallel aerial systems mounted at the edge of the glass cover of the light (see fig. 4). This has been done to avoid an unbalanced polar diagram which results from the use of a single aerial, due to the sudden change in the shape of the aeroplane to the rear of it.
10. Azimuth receiving aerials.-These are dipoles, which may be mounted in insulating bollards on the side of the fuselage (Havoc) or on the leading edges of the wings (Beaufighter). In the former case, reflectors are separately mounted behind the aerials (see fig. 5), and in the latter case the directors are mounted beyond the aerials on the leading edge of the wings (see fig. 6). At close range, differential fading may occur on the Beaufighter installation, due to poor pick-up on one aerial. This effect does not occur with the Havoc installation. A certain amount of "squint" also is obtained with the Beaufighter installation, due to interaction between the azimuth and elevation aerial systems, which effect is normally of the order of 5 deg.

S.D. 0165 (1), CHAP. 1

Fig. 6.--Starboard azimuth aerial and lower elevation aerial on Beaufighter aeroplane.

Fig. 7.-Elevation receiving aerial system on Havoc aeroplane.
11. Elevation receiving aerials.-These aerials are supported in insulating bollards above and below one wing and are bent back from the vertical. Mounted on the wing, behind and parallel to each aerial, is a reflector (see fig. 7).

Generator

12. In addition to the general 12 -volt or 24 -volt aeroplane D.C. supply, power is supplied to the equipment from an 80 -volt engine-driven A.C. generator. There are three types of generator, the type Q now being replaced by the type R and a slow-speed generator, type S. The last type is fitted in American aeroplanes with 24 -volt installations and has been developed to avoid the use of a gearbox, which would otherwise be necessitated by the lower ratio generator drive on these aeroplane engines. The frequency of the generator output will vary with the speed as shown in the table below:--
Generator.
Type Q
Type
Type S

Speed range in r.p.m.
3,000 to 6,000
3,000 to 6,000
2,000 to 4,000

Frequency in c / s.
1,200 to 2,400
1,300 to 2,600
866 to 1,732

Fig. 8.-Control panel, type 3.
S.D. 0165 (1), CHAP. 1

Fig. 9.--Interior of control panel, type 3.

Control panel, type 3

13. Owing to the varying speeds of the generator, its output voltage must be regulated, and this is performed by means of a voltage regulator situated in the control panel. The control panel also functions as a distribution box for the A.C. and D.C. supplies to the equipment, and its circuit diagram is given in fig. 11. The A.C. output from the generator is fed to a full-wave metal rectifier W_{1}, the output current from which, limited by the resistance R_{1}, energizes the solenoid $\mathrm{L}_{\mathbf{1}}$. Mechanical pressure is applied by the armature of the solenoid to the carbon pile resistance R_{2} in such a way that an increase in current in L_{1} results in an increase in the resistance of R_{2}. Thus, the field excitation current is reduced, resulting in the output voltage returning to the normal 80 volts. The maximum variation of the output voltage from the generator should not exceed 2 volts.
14. On account of the high internal reactance of the types R and S gencrators, a condenser C_{1} (see fig. 10) is incorporated in the control panel. This condenser has two sections of 5 and 3 microfarads and, by means of a link, the capacitance can be set to 5 microfarads for the type R generator, 8 microfarads for the type S, or short-circuited for the type Q.
15. A condenser C_{2} is connected across the D.C. supply to the generator field and serves to limit the voltage rise when this circuit is interrupted. A suppressor is included in the D.C. input circuit in the panel to prevent the conduction of interference produced by the transmitter blower and the receiver switch motor on to the general aeroplane D.C. line. A single-pole switch and pilot light are provided in the D.C. input circuit. In the OFF position the switch interrupts the supply to the generator field and has the effect of breaking both the D.C. and A.C. supplied to the output plugs of the panel, since the generator will give no output when its field is not excited.

Control panel constructional details

16. Views of the control panel are given in figs. 8 and 9 , details of the front panel and component layout in fig. 10 and the bench wiring diagram in fig. 12.
17. On account of the high internal reactance of the types R and S generators, a condenser C_{1} (see fig. 10) is incorporated in the control panel. This condenser has two sections of 5 and 3 microfarads and, by means of a link, the capacitance can be set to 5 microfarads for the type R generator, 8 microfarads for the type S, or short-circuited for the type Q.
18. A condenser C_{2} is connected across the D.C. supply to the generator field and serves to limit the voltage rise when this circuit is interrupted. A suppressor is included in the D.C. input circuit in the panel to prevent the conduction of interference produced by the transmitter blower and the receiver switch motor on to the general aeroplane D.C. line. A single-pole switch and pilot light are provided in the D.C. input circuit. In the OFF position the switch interrupts the supply to the generator field and has the effect of breaking both the D.C. and A.C. supplied to the output plugs of the panel, since the generator will give no output when its field is not excited.

Control panel constructional details

16. Views of the control panel are given in figs. 8 and 9, details of the front panel and component layout in fig. 10 and the bench wiring diagram in fig. 12.

aEROPLANE SUPPLY

ヨd人1 $73 N \forall d$
$70 \mathrm{C} \perp$ NOD
± 0

FIG. 12
FIG. 12

S.D. 0165 (1), CHAP. 1

17. As shown by the illustration in fig. 8, the panel is supported on a tray secured to the aeroplane. The components are carried on a sheet steel base and front panel (see fig. 9), a sheet steel screening cover sliding over this chassis ; effective contact for screening purposes is provided by a number of spring-loaded contact fingers round the edge of the panel. The condenser C_{1}, with the two sections of 5 and 3 microfarads, is situated between the voltage regulator and the interference suppressor; an instruction plate is provided giving the condenser connections for each type of generator. The wiring and pin connections are clearly shown in the bench wiring diagram in fig. 12. Five plugs are provided on the panel and these have the following functions:-
(i) 2-pin plug for connection to aeroplane D.C. supply.
(ii) 6 -pin plug for connection to the engine-driven generator.
(iii) Three 4 -pin plugs in parallel for the D.C. and A.C. outputs to the modulator and receiver, one plug being spare.

Modulator, type 20

18. H.T. current for the anodes of the transmitter valves is supplied from this unit in the form of positive pulses of approximately 7,000 volts peak value, and $2 \cdot 8$ microseconds duration, the pulses occurring at intervals of about 1,200 microseconds. Positive pulses, at equal intervals but with a peak value of approximately 400 volts, and delayed 2 microseconds after the anode pulses, are also supplied to the grid circuit of the transmitter, to damp out oscillations after the main anode pulse. The time base of the indicating unit of the equipment is operated by pulses of the same recurrence frequency and with an amplitude of about 16 volts. These pulses are also used to desensitize the receiver during the period that the direct signal from the transmitter is being received, as this signal would otherwise saturate the receiver; further they are used to suppress the I.F.F. set (see S.D. 0210 (1)) during the period of the transmitted pulse and a subsequent period greater than the time required for echoes to be returned from objects 8 miles distant, i.e. 80 microseconds. If this were not done, the I.F.F. set would be triggered off, causing interference to appear on the screen of the indicating unit. A description of the suppression action is given in S.D. 0210 (1).
19. The method of producing the pulses entails first generating priming pulses, the duration of which is several times that of the required pulses, these priming pulses being used to build up current in the pulse generating valves, in the common anode of which is an inductance. On the termination of a priming pulse, the pulse generating valves are cut off, and the collapse of the current in the anode inductance produces the required 7,000 -volt pulse.
20. Priming pulse generator.-This is a cathode-coupled multi-vibrator comprising the valves V_{1} and V_{2} (see the circuit diagram in fig. 13). Suppose that initially the valve V_{1} is conducting and V_{2} is biased beyond cut-off, due to a charge on C_{5} making the grid of V_{2} very negative and the cathode potential of V_{2} very low. The negative charge on C_{5} gradually decreases through the resistance R_{12} until the potential of the grid of V_{2} relative to the cathode rises above cut-off and the valve V_{2} passes current. As a result, the cathode potential above earth of V_{2} is raised and with it the cathode potential of V_{1}, since its cathode is coupled to that of V_{2}. The grid of V_{1} can be considered to be at a fixed potential with respect to earth and the rise in cathode potential will cause a fall in the current through V_{1} which, in turn, will result in a rise in the anode potential of V_{1}, causing V_{2} to conduct still more, due to this increase being applied to the grid of V_{2} through the condenser C_{5}. The process continues rapidly until the valve V_{1} is cut-off. The cathode potential of V_{2} now remains constant, but that of V_{1} falls as the cathode coupling condenser C_{7} discharges through the cathode resistances R_{9} and R_{10}, until V_{1} once more conducts. This results in a fall in the grid potential of V_{2} until V_{2} ceases to conduct, reassuming its initial conditions. The cycle is then repeated.
21. The interval between the pulses depends both on the amplitude of the pulse at the grid of V_{2}, as this determines the amount of charge on C_{5}, and on the time constant of the grid circuit of V_{2}, since this determines the rate of loss of the charge on C_{5}. The duration of the pulse depends on the pulse amplitude at the cathode of V_{2}, as this determines the charge on C_{7}, and on the time constant of the cathode circuit of V_{1}, which determines the rate of loss of charge on C_{7}. By means of the adjustable resistance R_{10}, the cathode resistance of the valve V_{1} can be adjusted to set the priming pulse duration to 20 microseconds. It is desirable to be able to make this adjustment without greatly altering the anode current of V_{1}, since such an alteration would result in a change of signal amplitude at the anode of V_{1}, which in turn would affect the interval between pulses. For this reason, the grid of V_{1} is connected through the high resistance R_{3} to a potential of about 300 volts, so that V_{1} passes an amount of anode current which is independent of the relatively small changes of anode potential.
22. The purpose of the condenser C_{1}, in shunt with the resistance R_{3}, is to transmit a positive pulse to the grid of V_{1} when the H.T. supply is switched on; this ensures the starting of the multivibrator.
23. The output of the priming pulse generator is fed from a reversing transformer in the anode of V_{2}, the signal at the secondary of this transformer is a positive pulse of about 400 volts peak value.
24. Pulse generating stage.-Four pentode valves, type V.T. 75A, V_{5} to V_{8}, which are specially selected for high emission and treated to withstand the high anode voltage, are connected in parallel. The positive priming pulses are fed to the grids of these valves, grid bias, resulting from grid current, being supplied by the condenser C_{10} shunted by the resistance R_{23} in the common grid lead. The positive excursion of the peaks of the pulses is thereby made about 50 volts as shown on the waveform diagram in fig. $14(a)$.
25. In the absence of priming pulses, the pulse generating valves would operate without grid bias and it has therefore been necessary to incorporate a cut-out in the main H.T. circuit, to prevent damage to valves or components, which failure of the multivibrator would otherwise cause.
26. The anodes of the valves are connected-through an inductance L_{4} of $3 \cdot 6$ millihenries to the H.T. supply and through a condenser to two inductances L_{5} and L_{6} of 8 and 4 millihenries respectively, which are connected in series to earth.
27. The potential at the anodes of the pulse generating valves for the period preceding the priming pulse is about 1,000 volts. When the valves are switched on by the priming pulse, the change of current in the inductance, as the valves conduct, causes a potential to build up across the inductance, so that the anode potential of the valves falls to practically zero. As the rate of increase of anode current falls off, the anode potential increases again, until at the end of 20 microseconds it has reached about 500 volts, a suitable condition for obtaining maximum anode current from the valves. The total peak anode current immediately before the end of the priming pulse is about 5 amperes, and at the end of the priming pulse this current falls to zero and the collapse of the current in the inductance produces the high-voltage pulse at the anodes.
28. When, at the start of the priming pulse, the anode potential falls to a low value, the cathode current passes through the screen grids. Resistances $\mathrm{R}_{26}, \mathrm{R}_{30}, \mathrm{R}_{36}$ and R_{40} are inserted in the screen leads and limit the screen current. The fall in screen volts produced by these resistances economises in cathode current during the early part of the priming pulse.

RESISTANCES	$\begin{aligned} & \mathbf{R}_{1} \\ & \mathbf{R}_{2} \end{aligned}$	R3	R4		$R_{6} R_{9}$ $R_{7} R_{10}$ R_{s}	$R_{1 I}$	$\begin{aligned} & \mathbf{R}_{12} \\ & \mathbf{R}_{13} \end{aligned}$	R_{14}	R15 Rn	$\begin{aligned} & R_{18} \\ & R_{19} R_{R 1} \\ & R_{20} \\ & \hline \end{aligned}$	$\underset{R_{e ®}}{R_{2}} R_{z}$			$\begin{aligned} & R_{26} \\ & R_{87} \end{aligned}$	R28	Res	$\begin{aligned} & R_{30} \\ & R_{31} \end{aligned}$	R32	$\mathrm{Ra3}^{3}$	R34 $\mathrm{R}_{35} \mathrm{R}_{36}$ R37	R_{38}	$\begin{aligned} & \mathrm{R}_{40} \\ & \mathrm{R}_{41} \end{aligned}$	$\begin{aligned} & R_{42} \\ & R_{43} \\ & R_{44} \end{aligned}$		R_{45}	R_{46}	
CONDENSERS		$\begin{array}{r} c_{1} c_{2} \\ c_{3} \end{array}$	c_{4}			$\begin{aligned} & C_{5} \\ & C_{6} \end{aligned}$	C_{7}	Cs_{8}			C3	ClO_{10}	Cl_{1}									Cl_{13}		C_{14}		C_{15}	
miscellaneous				s	$L_{1}^{T_{1}} V_{1}$			Le	$v 3$		v_{4}				T_{3} s	Vs			V6		v		$L_{4} \mathrm{~V}_{8}$		L5 L6		

29. The anode current of the valves is required to build up to a maximum at the end of the priming pulse and therefore, in order to make the screen potential rise towards the end of the priming pulse, an inductance L_{3} of 3 millihenries is inserted in the common screen lead, and this is tuned with a 0.006 microfarad condenser C_{11} to earth to such a frequency that the screen volts reach a maximum 20 microseconds after the start of the priming pulse. The waveform at the screens of V_{5} to V_{8} is shown in fig. 14 (b).
30. Resistances, each of 3 ohms, R_{29}, R_{33} and R_{34}, in each cathode circuit, enable the cathode current waveform to be examined with a monitor to ascertain that all the valves are operating correctly. The waveform of the cathode current is shown in fig. $14(c)$; the peak cathode is a little under 2 amperes for each valve.
31. Output to anodes of transmitter valves.-The high voltage pulse generated by the pulse generator valves is applied through a condenser to the anodes of the transmitter valves to produce pulses of high-frequency energy from the transmitter. The transmitter is a selfoscillator and imposes a load on the output of the modulator approximately equal to a $1,750-\mathrm{ohm}$ resistance shunted by a 150 micro-microfarad condenser (most of the capacitance is provided by the lead connecting the modulator to the transmitter). This capacitance, added to the capacitance of the modulator output circuit, tunes with the anode inductance at a frequency of about $215 \mathrm{kc} / \mathrm{s}$, so that the duration of a half-cycle is about $2 \cdot 3$ microseconds. The effect of the resistive component of the lead is to reduce the amplitude of the pulse and to increase its duration to about 2.8 microseconds. At the end of the pulse a negative anode bias is obtained from the condenser C_{15}, shunted by the resistance R_{46}, which has been charged while the transmitter valves are conducting. The object of this is described in para. 41. The waveform at transmitter anodes is shown in fig. $14(d)$.
32. Output to grids of transmitter walves.--In order to increase the rate of decay of the transmitter oscillator, it is arranged to increase the transmitter grid circuit damping, during the decay of the anode pulse, by driving the grids positive as the potential of the anodes approaches zero. A delayed positive pulse is therefore derived from the anode pulse at the junction of the inductances L_{5} and L_{6}; this pulse, with a peak value of about 400 volts, is applied to the grids of the transmitter valves.
33. Output to receiver and indicating unit.-The radiation from the transmitter takes place immediately after the end of the priming pulse and lasts for approximately 2.8 microseconds, and it is necessary to desensitize the receiver during this period. A fraction of the positive priming pulse about 16 volts in amplitude is tapped from the junction of the cathode resistors R_{18} and R_{19}, delayed by means of a 2-microsecond delay network comprised of the inductances L_{1} and L_{2}, and used for this purpose. The remainder of the necessary 2.8 microseconds delay takes place in the receiver, where the circuits are such as to provide a delay adjustable from approximately 0.3 microsecond to 1.5 microseconds. The gain then gradually increases, reaching full value in about 5 microseconds. In this way the production of spurious signals, which would be generated by the high-frequency components of a sharply rising wavefront, is avoided. A parallel connection from the delay network is used for the triggering of the time base of the indicating units.
34. L.T. supply.-L.T. for the modulator and for the transmitter valves is supplied from a transformer T_{3}, the primary of which is connected through switch $S_{1 B}$ to the 80 -volt A.C. supply terminals. Two secondary windings of the transformer T_{3} are connected in parallel and supply the $8 \cdot 8$-volt, $7 \cdot 5$-ampere current for the transmitter valves. Two 50 -ohm resistances across this supply are centre-connected to the chassis to give an earth-return for the transmitter H.T. supply. The filaments of the rectifier valves V_{3} and V_{4} are supplied by another secondary winding giving 2 amperes at $4 \cdot 0$ volts. The heater winding for the valves of the multivibrator gives 3 amperes at $4 \cdot 4$ volts, and the heater winding for the remaining valves V_{5}, V_{6}, V_{7} and V_{8}, 8 amperes at $4 \cdot 4$ volts.
35. H.T. supply.-The primary of the H.T. transformer T_{1} is connected through the switch $S_{1 A}$ to the 80 -volt A.C. supply terminals. $S_{1 A}$ and $S_{1 B}$ are parts of the same rotary switch, $S_{1 B}$ being first closed. The two rectifier valves are connected to form a full-wave rectifier, the output being fed through the choke CH_{1} and then further smoothed by the condenser C_{12}. The decoupling resistance R_{42} and condenser C_{13} prevent any pulse feed back. The centre tap on the secondary of the transformer T_{1} is connected through a cut-out, shunted by R_{14}, and metering resistance R_{20} to earth. Part of the H.T. current passes through the cut-out winding ; should the total H.T. current exceed 180 milliamperes, the cut-out breaks the 80 -volts A.C. supply lead to the primary of the transformer.

Fig. 15.-Modulator, type 20.

Modulator constructional details

36. A front view of the unit is given in fig. 15 and the layout of the components in fig. 16, the annotations being the circuit references from fig. 13. The black cover shown in the foreground in fig. 15 normally covers the terminal board on the front of the panel to which the D.C.

REAR OF CHASSIS

FRONT OF CHASSIS

SIDE VIEW

FRONT PANEL

REAR OF FRONT PANEL

S.D. 0165 (1), CHAP. 1

and A.C. supplies from the control panel, type 3, are carried; from this board are taken the A.C. filament supply for the transmitter valves and the D.C. supply to the transmitter blower motor. At the top of the front panel are the 3 -position switch, for the L.T. and H.T. supplies in the unit, and the reset knob of the cut-out in the H.T. supply. Ventilating perforations are provided at the back of this knob and below it in the front panel of the modulator.
37. The co-axial plugs, for the pulse connectors leading to the receiver and indicating unit and to the I.F.F. set are situated on the left, and below them are the jacks labelled J_{1} and J_{2}, used when metering the total modulator feed and the sum of the grid and anode feeds to the transmitter valves. Between the jacks is seen the clamp securing the slotted spindle of the potentiometer R_{10}, used to set the duration of the priming pulse to 20 microseconds; this should not normally require adjustment. At the base of the front panel are seen the two lugs which are used to secure the unit to its mounting in the aeroplane.
38. Access to the interior of the unit is obtained by removing the rear panel and sides, which are screwed to the chassis on the underside. A screen separates the pulse generating components from the remainder and this is also used to support the low-capacitance rod mountings of the components.

Transmitters, types T.3065, T.3065A and T.3065B

39. These transmitters are very similar, types T. 3065 and T.3065A being hand made and 24 -volt and 12 -volt types respectively. Transmitter, type T .3065 B is the mass production 24 -volt type. The circuit diagram is given in fig. 17.
40. The transmitter self-oscillates for the periods during which high-tension pulses from the modulator, type 20, are fed to the anodes of the two transmitting valves. These valves are connected together in a push-pull circuit, in which none of the electrodes of the valves are at earth potential. Lecher lines form the low-decrement tuned circuit in the anode circuit and largely determine the frequency of transmission. A shorting slider across these lines is used to tune the circuit to a frequency of $193 \mathrm{Mc} / \mathrm{s}$, the filament tuning condensers C_{1} and C_{2} and the position of the aerial coupling having a minor effect on this. The aerials are capacitance-coupled to the anode lines by means of cylindrical elements encircling the latter co-axially. The loading of the transmitter is adjusted by moving the cylindrical elements along the anode lines.
41. At the commencement of the modulator priming pulse, the potential at the modulator valve anodes falls from 1,000 volts to nearly zero. At the termination of the priming pulse, it rises to about 8,000 volts and then decays to 1,000 volts. As the transmitter valve anodes are connected to the modulator valve anodes through a condenser, the 1,000 -volt D.C. component is removed; the potential at the transmitter valve anodes falls from zero to $-1,000$ volts at the start of the priming pulse (see fig. $14(d)$), rises to about 7,000 volts at the end of the priming pulse and then decays to a slightly negative value, due to the action of the condenser C_{15} in the modulator output circuit, thus obtaining a clean cessation of the pulse (see fig. $14(d))$. This negative potential is then discharged through the resistance R_{46} in shunt with the condenser, the final anode potential being zero.
42. The initial negative pulse is stepped down by inductances L_{5} and L_{6} to about 2,000 volts and fed to the transmitter valve grids; it is delayed by these inductances, which form a delay network with the capacitances of the transmitter valve (see fig. $14(e)$). When the potential at the transmitter valve anodes suddenly rises, the grid potential is carried positive, due to the capacitance existing between the grids and anodes of the valves. When the anode potential reaches a certain value, the valve oscillates and grid current is generated, making the grids negative. As the anode potential falls, the grids are then driven about 400 volts positive due to the delayed anode pulse supplied from the modulator, the valve damping thereby being increased sufficiently to stop the oscillation. The duration of the positive grid pulse is about 9 microseconds, and during this time the anodes are held at a negative potential by the charge on C_{15}, thus making it impossible for the valves to oscillate, since the anodes are less positive than the grids. The charge on C_{15} leaks away via R_{46} before the next positive anode pulse appears, when it is renewed.

Fig. 18.-Transmitter, type T.3065B.

Fig. 19.-Rear view of transmitter, type T.3065B.
S.D. 0165 (1), CHAP. 1

Fig. 20.--Interior top view of transmitter, types T.3065, T.3065A and T.3065B.

Fig. 21.-Interior side view of transmitter, types T.3065, T.3065A or T.3065B.

S.D. 0165 (1), CHAP. 1

Transmitter constructional details

43. Views of the front and rear of the unit are shown in figs. 18 and 19. The louvres on the front are shaded by light screws to prevent the light from the transmitter valves being observed by the enemy in night interceptions. On the front of the unit are the two controls which are used to vary the capacity of the condenser of the filament tuning units, and below these controls are the two pairs of terminals for the filament heating supply. On the rear of the unit is mounted the blower supplying the cooling air to the anodes of the valves through the tubular anode lecher lines inside the unit. The blower comprises a D.C. motor (12-volt or 24 -volt, depending on the aeroplane D.C. supply) and a fan, the fan intake aperture being provided with a wire gauze screen. Above the blower casing is seen the screening tube through which runs the twin aerial feeder cable from the transmitter aerial junction box.
44. The interior of the unit is shown in figs. 20 and 21. As shown in fig. 20, the aerial feeder screening tube enters the rear of the unit and is clamped to an insulating crossbar, on which the cylindrical aerial coupling condensers are carried. The crossbar is mounted by clips on the side bars of the chassis, thus enabling its position to be adjusted to vary the coupling between the aerial condensers and the anode lines. Mounted on the inside of the front of the unit are the two filament tuning units and below them are the transmitting valves. The distances between the disc-shaped condenser plates and the large circular plates in the filament tuning units are varied by the control knobs on the front of the transmitter to tune the filament units to give maximum impedance. Circular milled locking nuts are provided on the screwed spindles of the condensers, beneath the control knobs, to secure these in position after setting-up. In fig. 21 the anode lecher lines are shown mounted on the cylindrical blower duct, and at their other extremities they carry the transmitting valves, by means of clips round the cooling fins on the anodes. The H.T. cable is brought through the rear panel underneath the blower and connected to the terminal block mounted on the base of the unit, shown on the right of fig. 21. Adjacent to this block are seen the 56 -ohm resistance and the choke in series with the H.T. lead, the choke being connected to the base of the lecher lines. The input suppression lead to the grids of the transmitter valves is brought through the front panel and connected to a terminal ; this terminal is connected through a choke to the centre point of the grid loop.

Receivers

45. There are two types of receiver, the earlier developed type being R. 3066 and the later R.3102A. Both types incorporate a switch unit and are interchangeable.

Receiver, type R. 3066

46. Receiving unit, type 26.-This is a superheterodyne receiver and as seen from the circuit diagram of this receiver in fig. 22, has one radio-frequency stage, tuned to $193 \mathrm{Mc} / \mathrm{s}$, a mixer stage into which the local oscillator feeds, four intermediate-frequency band-pass stages followed by a detector stage and a compensated cathode follower stage. Acorn pentode valves are used for the radio-frequency and mixer stages and an acorn triode in the oscillator position in order to give amplification at the frequencies used. For the remainder of the receiver, type V.R. 91 valves are used.
47. As described in para. 33, a positive pulse is supplied from the modulator, type 20, and this pulse is used to desensitize the receiver, by preventing the local oscillator from operating during the period of the transmitter pulse, since the direct signal from the transmitter would otherwise saturate the receiver. The positive pulse is applied through the terminal coloured ORANGE to the grid of the gas-filled relay valve V_{4}, and, on its arrival, V_{4} conducts and the potential of the anode of V_{4}, which is that of the junction of the resistances R_{13} and R_{14}, falls to merely zero value. The cathode of the oscillator V_{3}, is maintained at a potential sufficiently below that of the anode to maintain the oscillations previous to the suppression (see fig. 23).

When the anode potential of V_{4} and the potential at the junction of R_{14} and R_{13} falls, V_{a} the potential at the anode of V_{3} will also fall to nearly zero ; the positive potential at the cathode of V_{3} is maintained by the condenser C_{19}, thus the potential of the cathode of V_{3} will be above that of the anode and oscillation will cease. At the conclusion of the positive suppression pulse, the valve V_{4} will cease to conduct and the potential at its anode will rise as the condenser C_{62} is charged. When the potential of the anode of V_{3} is sufficiently above that of the cathode, V_{3} will once more oscillate ; the potential of the cathode can be varied by adjusting R_{12}; it will thus be apparent that R_{12} can be used to determine the point at which oscillations can start subsequent to the positive pulse. By this means, a delay equal to 0.8 microsecond can be introduced, the exponentially rising voltages in C_{32} governing the gain for a further 5 microseconds.

Frg. 23.-Suppression action in receiver type R.3066.
48. The chokes $\mathrm{L}_{2}, \mathrm{~L}_{10}, \mathrm{~L}_{11}, \mathrm{~L}_{13}, \mathrm{~L}_{17}, \mathrm{~L}_{21}, \mathrm{~L}_{26}, \mathrm{~L}_{29}, \mathrm{~L}_{31}$ with their associated by-pass condensers in the filament circuits of the valves $V_{1}, V_{2}, V_{3}, V_{4}, V_{6}, V_{7}, V_{8}, V_{10}$ and V_{11}, form filter circuits to prevent regeneration and self-oscillation in the receiver. The inductance L_{28}, in parallel with the condenser C_{46}, forms a tuned filter circuit, at intermediate frequency, in the anode circuit of the anode bend detector V_{9}; similarly, the chokes $\mathrm{L}_{27}, \mathrm{~L}_{30}$ with their associated by-pass condensers in the anode circuits of valves V_{9} and V_{11} prevent I.F. regenerative currents forming in the H.T. lead; resistances $R_{2}, R_{8}, R_{19}, R_{26}, R_{31}$ and R_{34} with their smoothing
condensers serve a similar purpose for the remaining valves. The inductance L_{g} in the H.T. lead of the oscillator valve V_{3} prevents the centre tap of the oscillator coil L_{8} becoming " earthy " through the condenser C_{62}. The gain in the receiver is controlled by means of the potentiometer R_{42}, from which the H.T. is fed to the screens of the R.F. and I.F. stages; this is necessary as otherwise signals returned from near objects would saturate the receiver, in which case the output voltages for the four input signals would be equal, and the discrimination required for direction-finding would be impossible.
49. The four intermediate-frequency stages are adjusted to give a bandwidth of $1.5 \mathrm{Mc} / \mathrm{s}$ $(\pm 750 \mathrm{kc} / \mathrm{s})$ for 3 db . down, the intermediate frequency being $45 \mathrm{Mc} / \mathrm{s}$. The valve V_{9} is biased back nearly to cut-off and functions as already mentioned as an anode-bend detector. It feeds into the cathode-follower stage, where the valves V_{10}, V_{11} function in series. A coil L_{5} is coupled to the first I.F. coils L_{3} and L_{4} and the input taken from an uncoloured plug on the front panel of the receiver for I.F.F. interrogation.
50. Power unit, type 77.-In addition to two power windings, separate secondary windings are provided on the power transformer T_{1} (see fig. 22) for the heaters of the two rectifier valves, the $6 \cdot 3$-volt supply for the valves of the receiver and indicating unit, the 4 -volt supply to the thyratron valve V_{4} in the receiver and the 4 -volt supply to the heaters of the cathode ray tubes. The half-wave rectifier V_{13} provides the 1,200 -volt negative H.T. supply for the cathode ray tubes; one of the heater leads for the cathode ray tubes is used for this connection, as shorting trouble was experienced between the pins 5 and 6 of the 6 -pin socket when a separate connection was made to pin 6. A smoothing system comprising a choke and the condensers C_{62} and C_{63} is connected across the full-wave rectifier V_{14}, which provides the 300 -volt H.T. supply for the

Fig. 24.--Receiver, type R. 3066.

Receiver, type R. 3066 constructional details

51. A view of the front of the unit is given in fig. 24. It is mounted with the screwdriver control of the oscillator bias potentiometer, the control knob of the oscillator tuning condenser, labelled TUNE, the control knob marked GAIN of the potentiometer controlling the H.T. supply to the three intermediate-frequency stages, and the uncoloured co-axial input plug for I.F.F. Mk. III interrogation purposes. The various other inputs to the receiver are taken through plugs on the right-hand side of the container in fig. 24 and the outputs from those on the lefthand side. The two brackets fastened to the upper side of the sheet steel container support it in the aeroplane.
52. The louvred cover on the underside of the container is removed to give the interior view shown in fig. 25 in which the receiving unit chassis is shown on the right with the rectifier valves V_{13} and V_{14}, power transformer T_{1} and switch unit mounted on the left. A terminal board is mounted on the top of the transformer, the terminals being labelled with the colours of the leads to facilitate reconnection. As is seen, the signal input leads are taken from the plugs on the left-hand side of the container and are connected to the four input plugs, situated at right-angles to each other, on the upper switch casing. The fifth plug on the upper switch casing is connected to the radio-frequency stage, shown towards the upper end of the receiving unit chassis. On a sub-panel attached to the upper end of the receiving unit chassis is seen the thyratron valve V_{4}, to which the suppression pulse lead is connected; this lead runs across the rear of the container from the input plug. The output lead from the receiver runs up the centre of the container and connects a plug on the lower casing of the switch to the output from the diode D.C. restorer valve V_{12}, which is mounted on the sub-panel attached to the lower end of the receiving unit chassis. The remaining leads, seen on the base of the container, connect the four output plugs on the lower switch casing to the four plugs mounted on the right-hand side of the container. The supplies to the indicating unit are taken through the 6 -pin plug seen below the four output sockets.
53. Receiving unit, type 26.-An interior view of the unit is given in fig. 25 and an under view in fig. 26 ; in these views the input stages are at the top and the output at the bottom. It will be seen that inter-stage screening is employed ; screening cans (not shown) are provided, the can on the R.F. stage above the unit being secured by screens to the flange on the vertical screen; the cans on the underside of the chassis clip in between vertical screens; if access to the various stages is required, the local oscillator tuning drive rod from the front panel should first be removed and these cans should then be removed in sequence, starting at the bottom in this view and replaced in the reverse sequence. The R.F. and mixer stage preset tuning condenser controls above the chassis protrude through holes in the can ; these controls and their condensers can be seen in fig. 26, the inductances of these stages being mounted on the condensers. Situated between these controls on the outside of the screening is a filament H.F. choke in the filament lead to the R.F. valve V_{1}.
54. In the under view of the chassis the sub-panel carrying the thyratron valve V_{4} is at the top on the right beside the oscillator stage. The oscillator components are mounted on an insulation panel at right-angles to the chassis. Mounted on a post on this panel is seen the single-loop inductance coupling, the oscillator and mixer stages, the oscillator coil being below it; in front of these is the tuning condenser, the spindle of which is rotated by an insulation rod (not shown) extending the whole length of the chassis to the TUNE control on the front of the receiver. The filament H.F. chokes for the oscillator and thyatron are seen below, and to the right of the insulation panel; the filament H.F. chokes for the other stages are seen on the right-hand side of the chassis, and are outside the screening cans. Next to the oscillator stage is the mixer stage, which is underneath the R.F. stage mounted above the chassis. In this stage is seen the first of the iron-dust-cored inter-stage transformers, situated to the right and below the valve; similar anode inductances or inter-stage transformers are seen in the following stages. A slot is provided in the top of the iron-dust-cores, which screw into the polysyrene formers; the position of these cores is adjusted to tune the inductance and the cores are then
S.D. 0165 (1), CHAP. 1

Fig. 25.-Interior of receiver, type R. 3066.

MIXER COUPLING COIL

\& OSCILLATOR COIL

Fig. 26.-Underview of receiving unit, type 26.

View with cover removed

part section BB. showing method of clamping the two sections of the switch together.
showing method of clamping wire from plug mounting assembly

Part section CC. - !

Parl section AA.

sealed in position by pitch. On the right of the lower part of the chassis in this view is the grid bias battery for the I.F. and the second detector valves, and below this is the sub-panel carrying under a bracket the diode D.C. restorer. At the lower end of the chassis is the gain control potentiometer.

Receiver, type R.3102A

55. This is a superheterodyne receiver with two radio-frequency stages tuned to $193 \pm 1 \mathrm{Mc} / \mathrm{s}$, a mixer stage into which the oscillator feeds, three intermediate-frequency band pass stages followed by a diode detector, a video-amplifier, cathode follower and D.C. restorer. The circuit diagram is given in fig. 28.
56. The delayed 20 -microsecond priming pulse from the modulator, type 20 , used to suppress the receiver during the period of the transmitter pulse, is fed in through the plug marked ORANGE to the grid of the valve V_{12}. Prior to the arrival of the pulse, this valve is cut-off, and on the arrival of the pulse it passes current and its anode potential falls. The anode is coupled by the condenser C_{13} to the junction of the resistances R_{3} and R_{13} in the H.T. supply to the local oscillator valve V_{4} and the fall in the anode potential of V_{12} stops oscillation. The valve V_{12} is driven into grid current by the pulse from the modulator, the grid thus being at zero potential when the pulse terminates. The falling side of the pulse will reduce the potential of the condenser C_{4} (see fig. 13) in the modulator, to about 80 volts negative. This condenser will then slowly become charged through the resistance R_{6} across the grid of V_{12}, thus applying negative bias to the valve during intervals between the positive pulses from the modulator.
57. As soon as the valve V_{12} is cut off, the potential at the anode of V_{4} rises exponentially due to the charging of the condenser C_{12} through the resistance of R_{3} (the potential across C_{13} being small) until the voltage across the valve V_{4} is sufficient for oscillation to commence. The condenser C_{12} is also fed through the resistance R_{46} and from a point on the resistance VR_{2}, which, in series with R_{12}, is connected across the H.T. supply. Before V_{12} conducts, this serves to tie down its anode potential and therefore the potential across C_{12}. The exponential charging curve of C_{12} will depend on this initial potential and thus VR_{2} can be used to regulate the interval elapsing between the cessation of the suppressor pulse from the modulator and the commencement of oscillation in V_{4}.
58. Brass cores are used in the inductances L_{1}, L_{2}, L_{3} and L_{4}, the tuning of the radiofrequency, mixer and oscillator stages being effected by adjusting the position of these cores. An intermediate-frequency of $45 \mathrm{Mc} / \mathrm{s}$ is employed, the I.F. stages being aligned by means of the dust-cored coils L_{10} to L_{15} and L_{17}, L_{19}, to give a bandwidth of $\pm 750 \mathrm{kc} / \mathrm{s}$ for 3 db . down.
59. The coil L_{22} coupling with L_{11} is fed from an uncoloured plug on the front panel of the receiver for I.F.F. interrogation purposes.
60. The second detector V_{8} is a diode (V.R.92) the negative signal from its anode being fed to an amplifier V_{9}, across which the cathode follower V_{10} is connected. The positive output from the cathode of V_{10} is subjected to D.C. restoration by V_{11} and taken through the motordriven switch to the four output plugs of the receiver. The feeds from the switch to the output plugs differ from those in the receiver, type R.3066, in that the present receiver employs a negative output signal and it is required to make the receivers interchangeable.
61. Power unit.- The 300 -volt supplies for the valves of the receiver and indicating unit are taken from the transformer T_{1}, separate windings on the transformer T_{2} providing the heater and E.H.T. supplies for the cathode ray tubes of the indicating unit. Separate smoothing is provided by L_{20} and C_{14} for the 300 -volt supply to the receiver and L_{21}, C_{42} for that to the indicating unit.

FIG. 28

Receiver, type R.3102A : constructional details

62. This unit is illustrated in fig. 29. At the bottom of the front panel is the knob labelled OSC. BIAS, which adjusts the point at which the receiver becomes sensitive subsequent to the transmitter pulse and is coupled to the potentiometer VR_{2}. It is so labelled to conform with the receiver R.3066, where the suppression control is obtained by varying the oscillator bias, and that labelled GAIN for adjusting the potentiometer VR_{1} across the H.T. supply to the screen grids of the valves $\mathrm{V}_{2}, \mathrm{~V}_{6}$ and V_{7}. On the left of these knobs is the co-axial plug used for I.F.F. interrogation purposes. At the top of the front panel is the oscillator circuit tuning coil labelled TUNE, on the left of which are the three preset screwdriver controls tuning the R.F. stages normally covered by small covers. The front panel is extended at right angles and carries, as shown in fig. 28, the 4 -pin plug for connection to the control panel, type 3 , on the right-hand side, the left-hand side carrying the 6 -pin plug for connection to the indicating

Fig. 29.--Receiver, type R.3102A.
unit. On the right-hand side of the receiver chassis are the four input co-axial plugs connected to the aerials, the four output co-axial plugs connected to the indicating unit being mounted in line behind the 6 -pin plug in the order yellow, red, white, green. On removing the cover over the underside of the receiver, secured by four Dzus fasteners, the view shown in fig. 30 is obtained. To enable the chassis to be withdrawn from the container, it is necessary to undo the four Dzus fasteners in the corners of the front panel. Screws soldered to the screening cans enable them to be secured to the chassis. The cans have been removed in the view shown in fig. 31.

Switch units

63. In addition to the switch unit, type 39, a further switch unit, type 39A, is being developed, with which it will be interchangeable.

Fig. 30.-Interior of receiver, type R.3102A.

Fig. 31.-Underview of receiver, type R.3102A.

S.D. 0165 (1), CHAP. 1

64. Switch unit, type 39.-A sectional view of the switch is shown in fig. 27. Signals received on the two elevation and two azimuth aerials are fed separately into the four upper plugs on the switch unit in the receiver. By means of this switch the aerials are connected in sequence to the receiving unit, a short open-circuit period being allowed between each of the connection periods. The contacts are operated by a rotating crank through a ball race mounted with an insulation bush; the crank is driven round by a shunt-wound D.C. motor supplied from the aeroplane D.C. supply. The crank rotates at about 1,750 r.p.m., which is high enough to avoid a flicker effect in the final visual indication. Each aerial contact should close for $80 \pm 5 \mathrm{deg}$. and the corresponding output contact for 65 ± 5 deg., the centre points of the periods of closing being as nearly as possible coincidental. The output from the receiving unit is fed into the switch unit and thence in sequence through the four lower plugs on the switch to the indicating unit. The input and output plugs are coloured as shown in the sectional view of the switch and in the circuit diagram of the receiver.
65. Switch unit, type 39 : constructional details.-The switch motor is a shunt-wound D.C. motor running at a constant speed of $1,750 \pm 250$ r.p.m. Removal of a small cover on the motor casing at the end further from the switch casings will reveal an aperture giving access to the commutator. There are two types of motors in use ; in the one, the supply leads run into the motor casing, where they are connected to the brushes; in the other type the leads are connected to tags secured on the outside to the brush-holders. As seen in the sectional view in fig. 31, a spacer separates the inner switch casing from the motor casing to which it is secured; the outer switch casing is clamped to the inner casing as shown in the small sketch in fig. 27. Four plugs in the side of each casing are each provided with spring contacts which rest on insulation rings carried on the outer races of two ball bearings. The bearings are separated by a spacer and are mounted on an eccentric shaft extension (termed the crank) of a shaft coupled to the end of the motor spindle by a collar secured by a milled pin. As the eccentric shaft revolves, the spring contacts from the four plugs in each switch casing are allowed to make contact in sequence with contact posts. These contact posts are screwed into metal rings, secured in spigots in the casing by screws through slots in the rings. The rings are connected by means of a lead to the fifth plug in the side of each switch casing, as shown in the end view of the switch in fig. 27.

Notes on cathode followers

66. Without the cathode-follower valve, the capacitance of the output leads to the indicating unit would be in parallel with the anode load resistance. This would result in a distorted output waveform, as both the build-up and decay time of the output circuit would be increased. This is due to the fact that the time constant of the circuit comprising the load resistance and the capacitance of the output leads might be greater than the input pulse width, and the output voltage would not then have time to reach its maximum value, thus both distortion of the output pulse shape and loss of peak output would result. It is to overcome these defects that the cathode-follower stage is introduced.

Fig. 32.-Cathode follower circuit diagrams.
67. In fig. 32(a) the circuit diagram of a cathode follower is shown with a cathode load resistance R and shunt capacitance C . The equivalent circuit to this is shown in fig. $32(b)$, in which E_{g} is the input voltage, R_{a} the anode A.C. resistance of the valve, and g the mutual conductance of the valve. The effective resistance across the output is $\mathrm{R}_{e}=\frac{1}{g+\frac{1}{\mathrm{R}_{a}}+\frac{1}{\mathrm{R}}}$
and CR_{e} is the time constant of the output circuit. This equation, however, only applies as long as the current through R and C is increasing. When the current decreases, i.e., when the input potential to the grid of the valve goes in a negative direction, the time constant is always greater than CR_{e}, since current cannot flow in a negative direction through the valve, and the capacitance C can therefore only discharge through R. Any anode current flowing will tend to prevent C discharging, and therefore the effective time constant of discharge of C may be greater than CR and never less. In the case where a type V.R. 91 valve is used, g equals $6 \mathrm{~mA} / \mathrm{V}, \mathrm{R}_{a}$ equals approximately 400,000 ohms and R is chosen to be about 4,000 ohms, C being of the order of $200 \mu \mu \mathrm{~F}$.

Then

$$
\begin{aligned}
\mathrm{R}_{e} & =\frac{10^{3}}{6+\frac{1}{400}}+\frac{1}{5}=160 \text { ohms, approximately. } \\
\mathrm{CR}_{e} & =3 \cdot 2 \times 10^{-8} \text { seconds. } \\
\mathrm{CR} & =0 \cdot 1 \times 10^{-6} \text { seconds. }
\end{aligned}
$$

68. The potential between grid and cathode is normally zero. If a large negative signal with a large wavefront is applied to the grid, the resulting cathode waveform will have a much less steep front for the reason given above. For example, in 0.5 microseconds, which is approximately the time of rise of a normal received pulse, the voltage across the output capacitance C will only have decreased to $e^{-0.5}$, i.e. $0 \cdot 6$ of its initial value.

Indicating units, types 20, 48 and 48A

69. The circuit diagrams of these units are given in figs. 33 and 34 . The chief differences between the types are given in paras. 73 and 74.
70. The positive timing pulse used to trigger the indicating unit is the delayed priming pulse from the modulator, type 20 , being introduced to the indicating unit through the ORANGE terminal to the grid of the time bias valve V_{1} and causing this valve to pass current. Prior to the arrival of the pulse, the grid of V_{1} is held negative by grid current and the voltage at its anode is at a maximum.
71. Interception range.--With the switch S_{1} in the position I, the positive pulse on the grid of V_{1} causes the valve to discharge the capacitance across the valve formed by circuit strays. On the termination of the pulse, this capacitance becomes charged through the anode resistance R_{1} and the potentiometer R_{2}, the charging curve being exponential (see fig. 35). The rate of charge is governed by the potentiometer R_{2}, which therefore functions as a velocity control. It is labelled TB. AMP., as it acts as an amplitude control in the following way.

S.D. 0165 (1), CHAP. 1

In fig. 35 the dotted line is the scan voltage curve for another setting of R_{2}, and it is seen that for times between the start and end of the charging curve, the scan potential has been increased. Thus for an object at any range, say 4 miles, the effective length of the time base will be increased.
72. Beacon range.-With the switch S_{1} in the position B, the timing pulse causes the condenser C_{10} to discharge through the valve V_{1}. Subsequent to the termination of the pulse, the condenser is charged through the resistances R_{1} and R_{28}, giving a time base scan potential which is independent of R_{2}, the range covered being more than 60 miles. The waveform at the anode of V_{1} is applied through the condenser C_{5} to the time base plates of the cathode ray tubes. This waveform is also applied through the condenser C_{2} and grid stopper resistance R_{4} to the grid ot the valve V_{2} across the resistance of R_{3} and R_{6} This valve acts as a phase-reverser and its positive output is fed through the condensers C_{3} and C_{4} to the grids of the cathode ray tubes, causing the potential of these grids to vary in opposite phase to the time base voltage. The effect of this is to brighten up the trace on the screen of the tubes in proportion to the speed, resulting in more uniform brightness over the length of the trace. This effect is controlled by the potentiometer R_{7}.

Fig. 35.-Time base action.
73. A shift potential is applied to the time base plate of each tube through the potentiometcr R_{12}, which is connected in series with R_{13} and R_{27} across the H.T. supply to the valves of the unit. The mean brightness of the trace is varied by means of the potentiometer R_{8} or R_{21}. The potentials on the second anodes are varied for focusing purposes by means of the potentiometers R_{10} and R_{23}, which are connected positively with respect to the cathodes. The second anodes are connected to the common earth return, to which the third anodes of the type V.C.R. 138 tubes are also connected. The differences between indicating units, types 48 and 48A lie chiefly in the component layout and wiring and it is due to improved layout that the condensers C_{11} and C_{12} are not needed in the indicating unit, type 48A. Attention is also drawn to the absence of the amplitude control potentiometers R_{29} and R_{30} in the indicating unit, type 20, where they are not necessary, due to the closer limits to which the type A41.G.4A tubes were manufactured. In the case of the type V.C.R. 138 the sensitivity limits are wider and these time base amplitude
potentiometers (labelled SCAN LENGTH) enable the scan lengths to be adjusted to fit the range scales on the screens of the instruments. The deflection sensitivities of the type A41.G.4A tube are for the X-plates, $0.31 \mathrm{~mm} . / \mathrm{V}$. and for the Y-plates, $0.40 \mathrm{~mm} . / \mathrm{V}$; those of the type V.C.R. 138 are for the X-plates, 0.25 to 0.38 mm ./V. and for the Y-plates, 0.55 to 0.75 mm ./V.

Indicating units, constructional details

74. Views of the units are given in tigs. $36,37,38$ and 39 . In the front view in fig. 36 the left-hand tube is the elevation tube, the screens being shaded by one rubber visor clipping into the flange around them. Perspex range scales are fitted within the flange to facilitate estimation of the range of the target. The differences between the various types of unit outlined in the

Fig. 36.-Indicating units, types 20 and 48.

Fig. 37.-Rear view of indicating units, types 20 and 48.
S.D. 0165 (1), CHAP. 1

Fig. 38.-Interior of indicating unit, type 20.

Fig. 39.-Interior of indicating unit, type 48.

previous paragraph are shown in the plan views. Situated beneath the indicating units, types 48 and 48A are the screwdriver controls labclled SCAN LENGTH, which are used to set the time base lengths when new tubes, type V.C.R. 138, are inserted. The holes in the base of the container for these controls are normally filled by rubber bungs. The range switch S_{1} is on the underside on the left in the front view, behind which is the 6 -pin power input plug. The other plugs on the underside of the container are the signal input plugs, which are suitably coloured. On the rear of the units are the controls common to both tubes, labelled SHIFT BRIGHTNESS and T.B. AMP which are used, respectively, to centralize the time base line, to make the brightness of the trace uniform over its length, and to set the length of the trace. On the front of the units are the two sets of BIAS and FOCUS controls each situated next to their respective tube screens, the former being used to control the brightness of the trace. The brackets seen on each side of the unit support it in the aeroplane. Removal of the top cover gives access to the interior.
75. In the indicating unit, type 20 straps padded with sponge rubber and situated below the conical portions of the tubes, securc them in position. India-rubber masks, fitted over the screen ends of the tubes, locate them in the front of the unit.

Indications

76. Typical indications obtained on the screens of the cathode ray tubes in the indicating unit are shown in fig. 40. The time bases are seen as lines across the screens; on the elevation tube the time base runs from left to right, on the azimuth tube from bottom to top. As shown in fig. 40 , the time base scan is exponential and this must be taken into account when estimating the distance away of the detected aeroplane. The indications at the start of the time base scan are due to the break-through of the direct signal from the transmitter, since the suppression described in paras. 47, 56 and 57 is not quite complete. The large "echoes" towards the ends of the scans are cchoes from the ground vertically beneath the aeroplane, and from houses, trees and any irregularitics of the terrain. The echoes half-way along the time base are those duc to another aeroplane; since the echo on the right-hand side of the time base is greater than that on the left-hand side of the azimuth tube, the target aeroplane is to starboard of the searching acroplane. Similarly, the clevation indication shows that the target is above the searching aeroplane. It will be seen that the maximum range of detection of a target aeroplane is limited to the height of the searching aeroplane ahove the ground, since the ground echoes are very much larger than aeroplane echoes.
77. On approaching the target, the amplitude of the indications would increase, until the reffected signal was so strong that it would saturate the receiver. If this took place, no further increase in tho size of the indications would occur and it wouid not be possible to effect a fair comparison of the amplitudes on either side of the time base linc for direction-finding purposes. It is necessary, therefore, to reduce the amplitucle of the echoes on cither side of the time base scans to about 3 cm ., by turning the gain control on the receiver counter-clockwise; subsequently the gain must be restored as, otherwise, indications from distant objects will not be observed. As the indication closely approaches that due to the direct signal from the transmitter, a drop in amplitude will be noticed. This is due to the lower gain of the receiver following upon the suppression applied during the period of the transmitter signal (see para. 47 and figs. 23 and $41(a))$
78. When the target aeroplane is at a smaller range than the distance corresponding to the transmited pulse width, i.e about $1,200 \mathrm{ft}$, the echo will overlap the direct pulse reccived as shown in fig. $41(b)$. An indication is still given, however, by the portion of the reffected pulse. which is not overlapping, and which occurs while the heterodyne volage is still being built up.
after the suppression of the local oscillator; thus the indication does not move along the time base scan as the distance between the aeroplanes is decreased, but remains at the point where the local oscillator is permitted to oscillate again. The amplitude and width of the echo both decrease, however, as the mean heterodyne voltage decreases, and the portion of the pulse used becomes so narrow that the signal does not have sufficient time to build up to a maximum amplitude. It is therefore possible to gain some idea of the range, since for distances below $1,000 \mathrm{ft}$. the echnes fall fairly rapidly until at about 500 ft . the echo disappears completely. It is necessary for the control labelled OSC. BIAS on the receiver to be adjusted correctly, since this determines the minimum range obtainable with the equipment; if the local oscillator does not start sufficiently soon, the minimum range is larger than need be, and if too soon, the direct signal from the transmitter may be received and give a very wide indication.
79. It is absolutely necessary for the searching aeroplane to be in level flight before using the indications to obtain the position of the target aeroplane. Should the searching aeroplane be banking when the screens are viewed, the relative position of the target aeroplane at that moment will be given; what is required, however, is its position in terms of azimuth and elevation.

Installation

80. Besides consideration of space and weight distribution, the position of various units in the aeroplane must be such that the operator is able to view the screens of the indicating unit and be able to reach the controls of the receiver and the reset button on the modulator. In addition, the distance between the receiver and indicating unit should not exceed 7 ft ., as the output stage of the receiver is designed to deal with the capacitance of the cable up to this length; the cable, Uniradio No. 6, employed for the four signal leads between the receiver and indicating unit possesses the lowest capacitance compatible with the requisite mechanical strength. The length of the H.T. cable from the modulator should not exceed 2 ft ., as excessive capacitance resulting from a longer cable would affect the pulse width.
81. In the Beaufighter aeroplane (see fig. 42) it was felt necessary to have a look-out aft of the aeroplane, and for this reason the operator faces aft with the indicating unit in front of him, i.e., with the screcns of the unit looking forward. The transmitter is mounted above the modulator on a common crate secured to the floor of the plane, this being necessary due to considerations of space. The crate carrying the transmitter and modulator is removable, in order that the T.1154/R. 1155 can replace the present equipment when the aeroplane is required for long-range operations.
82. In the Havoc and Boston aeroplane (see figs. 43 and 44) a second control column is provided in the rear cockpit and it was thought possible for the operator to employ this to guide the aeroplanc into the correct path; in this case, therefore, the operator sits facing forward, with the indicating unit at eye level in front of him. It is mounted on the deck beneath the cowling. The remainder of the equipment is situated forward of the bulkhead in front of the rear cockpit. There are four circular holes in the bulkhead which enable the operator to reach the controls; these holes are normally screened by black-out curtains. When necessary, removal of the units, other than the indicating unit, is performed by standing inside the open bomb compartments; the transmitter and modulator are tied together by wiring and carried on separate trays on a common plywood base; these units would therefore be removed together, after slackening the knurled nuts securing them to the trays.

S.D. 0165 (1), CHAP. 1

83. The A.C. generator on the Beaufighter and Havoc aeroplanes is situated to the rear of the port engine. Screcning of the equipment is complete. The.D.C. leads from the A.C. generator are connected to the suppressor situated in the control panel, which eliminates any "noise" coming from the D.C. supply. Other possible sources of interference, such as the ignition system, are either screened or filtered; the bonding of the ignition screening should be sound. The aerial leads are not bonded over their length, since they are rubber-covered and removal of this cover would result in deterioration of the insulation; the braiding is, of course, earthed at the ends of the leads and wherever plugs and socket occur.
84. Colour identification.-The various plugs and sockets of the equipment are normally identified by suitable colours, as listed below. In order to avoid confusion with regard to the leads and temminating sockets, each lead should bear the same colour as that of the appropriate plug to which it is normally connected. Units should therefore examine all plugs to ensure that they bear some sort of colour identification, and, secondly, they should examine the leads and terminating sockets, ascertaining whether the lead bears a similar colour to that of its appropriate plug. Where no such colour identification is present, units should provide it, using suitable paint.
(i) Signal leads:-

In certain aeroplanes variations from the above system may exist. For example, in the Havoc aeroplane the indicating unit is mounted upside down (see fig. 43) and the aerial connectors to the receiver are therefore changed over.
85. Connector sets.--The set of connectors for each particular type of aeroplane is given a type and reference number, e.g., A.R.I/5003/P for the A.I. Mark IV installation in the Beaufighter, the type number consisting of the installation number affixed by a letter or letters relating to that particular aeroplane installation.
86. Connectors. -Type numbers of individual connectors contain a basic number denoting the function, c.g., receiver to azimuth acrial port, followed by a number for each design of connector fulfilling this function. Certain connectors may be in one length on some types of aeroplane installation and in two or more lengths on others. When in sections, each will have the same basic type and the suffixes will be in three groups as below, determined by the differences in identification sleeves, as given in the "Key of Connectors."

Suffix	Application		
$/ 1$ to $/ 49$			
$/ 50$ to $/ 69$			
$/ 70$ to $/ 99$		\quad	Connector in one length or instrument to junction.
:---			
Intermediate action (if used).			
Junction to destination.			

KEY TO CONNECTORS

Basic type	Function	Colour code	Marking of connector sleeves				
			Suffixes / 1 to /49		Suffixes /70 to /99		Remarks
			End Λ	End B	End A	End B	
384	Pancl, control to	-	Panel	Alternator	Junc.	Alternator	
385	Panel, control to	-	control Panel	Mor, unit	Junc.	Mod. unit	
	modulator unit.		control	(or junc.)			
387	Panel, control to receiver.	-	Panel control	Receiver	Junc.	Receiver	
388	Receiver to ist indicating unit.	-	Receiver	1st indic. (or junc.)	Junc.	1st indic.	
390	Modulator unit to 1 st indicating unit.	Orange	Mos. unit	lst indic. (or junc.)	Junc.	1 st indic.	
391	Modulator unit to receiver.	Orange	Mod. unit	Receiver (or junc.)	Junc.	Receiver	
395	Panel, control to D.C. supply.	-	Panel control	T).C. (or junc.)	Junc.	D.C.	
484	Modulator unit to R. 3077 or R. 3078.	Violet	Mod. unit	R.3077-8 (or junc.)	Junc.	R.3077-8	
904	Receiver to lst indicating unit.	Red					
905	Receiver to lst indicating unit.	Green	Recciver	1st indic.	Junc.	1st indic.	$\} \begin{gathered}\text { All } \\ \text { formerly }\end{gathered}$
906	Receiver to ist indicating unit.	White		(or junc.)			type 389
907	Receiver to 1 st indicating unit.	Yellow					
910	Recciver to azimuth aerial, port.	Rerl	Receiver	AZ. AE. port (or junc.)	Junc.	AZ. AE. port	Both formerly
911	Recciver to azimuth acrial, starboard.	Creen	Receiver	A7. AE. sthed (or junc.)	Junc.	AZ. AE. stbd.	$\left\{\begin{array}{c} \text { type } 396, \\ 398 \text { or } 402 \end{array}\right.$
912	Receiver to impedance matching unit, elevation, upper.	White	Receiver	Elev. AE. IMU upper (or junc.)	Junc.	Elev. AE. IMU upper	Both
913	Receiver to impedance matching unit, elevation, lower.	Yellow	Receiver	Dlev. AF. IMU lower (or junc.)	Junc.	Elev. AE. IMU lower	formerly type 398 or 403

OPERATION IN THE AIR

Switching-on and adjustment

87. The equipment should not be switched on until the aeroplane is in flight and should be switched off before landing. Before switching on, check that the connoctors between the umts are connected.
(i) Switch on the control panel; this should switch on the receiver, indicating unit and the blower on the transmitter. Verify that the blower is drawing in air by plaring the fingers over the inlet.

 $!$
\qquad

S.D. 0165 (1), CHAP. 1

(ii) Turn the switch on the modulator to the position L.T. ON, wait 60 seconds and turn it to the position H.T. ON. See that the transmitter valves are alight by looking through the louvres in the lid of the transmitter. Reset the knob on the modulator, labelled PRESS to RESET, if it jumps forward.
(iii) After about 3 minutes, look at screens on indicating unit; a horizontal time base with some vertical indication should be seen on one screen and a vertical time base with some horizontal indications on the other. If no indications are seen, adjust the controls marked BIAS on the indicating unit until they appear. Do not have the indications too bright. Now adjust the controls marked FOCUS to make these indications sharp.
(iv) If the time base scans are not central, make them so by means of the control labelled SHIFT, on the rear of the indicating unit; if necessary, adjust the length of the scans by means of the control labelled T.B. AMP. and make the brightness of the indication uniform over its length by means of the control labelled BRIGHTNESS.
(v) Turn the control labelled GAIN on the receiver until the fine lines (receiver " noise") on either side of the central time base scan are about $\frac{1}{8} \mathrm{in}$. wide (see para. 77 for further details of use of gain control).
(vi) Turn the control labelled TUNE on the front of the receiver to increase the amplitude of the "ground echoes," visible at right angles to the central time base scan, to a maximum.

Switching-off

88. (i) If the apparatus is to be used again after a short time, turn the switch on the modulator to the position L.T. ON.
(ii) When finally switching off, turn the switch on the modulator to the OFF position and switch off the control panel.

Precautions in operation

89. (i) The modulator must not be switched on unless, it is connected to the transmitter and the transmitter is connected to the acrial.
(ii) The control panel should not be switched on unless it is connected to the receiver.
(iii) If the reraiver is provided with an ON-OFF switch, thic chould he left permanently in the ON position.

FAULT-FINDING CHART

FAULT

INSPECTION AND REMEDY

Indications

1. Time base scan normal, receiver " noise" normal on both tubes:-
(i) Echoes absent on both tubes ..
(ii) Echoes absent on one side of the time base scan on one tube.
2. Time base normal, " noise" normal on both tubes :--
(i) Echoes weak on both tubes
(ii) Echoes weak on one side of time base scan on one tube.
3. Time base normal, noise and echoes absent :-
(i) On both tubes
(ii) On one side of scan of one tube
4. Long time base
5. Short time base
(i) Check with a screwdriver for "sparks" on the transmitter aerials, or see that neon lamp lights.
(ii) If no sparks are obtainable or neon lamp fails to light, check as in item 29.
(iii) Check transmitter aerial, feeder and W-plug in nose of fuselage.
(iv) Inspect the input lead to the receiving unit from the switch unit and its associated plugs and sockets. Test by connecting external aerial direct to receiver.
(v) Inspect R.F. trimmers. These may be out of adjustment or screwed down tightly.
(i) Check corresponding receiving aerial and feeder for continuity and insulation.
(ii) Examine the appropriate input contact in the switch unit in the receiver.
(i) Check transmitter aerial and fecder and W-plug in nose of fuselage for continuity and insulation.
(ii) See item 28 (ii).
(iii) Tune R.F. and mixer stages in the receiver.
(iv) Faulty receiver, see item 30 (ii).
(i) Check insulation and continuity of corresponding receiving aerial and feeder.
(ii) Examine the corresponding input contact in the switch unit in the receiver.
(i) See that all valves are correctly heated.
(ii) Test for continuity from output from cathode follower to switch motor and to output leads.
(iii) Check tuning of R.F. and mixer stages.
(iv) Check for faulty receiver as in item 30 (ii).
(i) Check lead from switch unit to indicating unit.
(ii) Check corresponding output contact on switch unit.
(iii) Check the leads inside the indicating unit to the cathode ray tube.
(i) Check setting of time base amplitude control.
(ii) Check high-voltage rectifier in receiver (V_{13} in fig. 22, V_{14} in fig. 28).
(iii) Check delayed priming pulse leads from modulator to receiver.
(i) Check setting of time base amplitude control.
(ii) Test for leakage across all dclayed priming pulse leads from modulator to receiver, indicating unit and I.F.F. set.
(iii) Check time base valve in indicating unit (V_{1} in figs. 33 and 34).
(iv) Check that time base amplitude control is fully clockwise.

FAULT-FINDING CHART-continued

- FAULT

INSPECTION AND REMEDY

7. Distortion of time base ..
8. Time base distorted to figure-of-eight
9. Time base absent, but spot or line visible. Time base amplitude control has no effect on beacon range (" B " position of switch) on both tubes:-
(i) On both tubes
(ii) On one tube
10. Split time base
11. No indications at all :-
(i) On both tubes.
(ii) On one tube
12. Poor focus at beginning of the trace
13. Insufficient brightness on interception (" I ") range.
14. "Ghost image " or fixed echo, even obtainable in flight.
(i) Suspect stray magnetic fields.
(ii) Check value of grounding resistors on signal plates of cathode ray tubes.
(i) Check cathode follower valves in R. 3066 (V_{10} and V_{11}, see fig. 22).
(i) Test for radiation with neon lamp or screwdriver on transmitter aerial.
(ii) If radiation is poor, see item 28 (i).
(iii) Check leads and socket from modulator unit to receiver and indicating unit carrying delayed priming pulse.
(iv) Check supply leads and voltages from receiver to indicating unit.
(v) Check full-wave rectifier valve in receiver (V_{14} in fig. 22, V_{13} in fig. 28).
(vi) Check time base valve (V_{1} in figs. 33 and 34).
(i) Examine wiring and components associated with time base valve and cathode ray tube concerned.
(i) Check grid bias battery in R. 3066.
(ii) Check for non-rectification by D.C. restoration diode (V_{11} in fig. 27, V_{12} in fig. 22).
(iii) See that $6 \cdot 3$-volt diode is used for D.C. restorer.
(iv) Microphony due to aeroplane vibration in second detector in R .3066 (V_{9} in fig. 22) which may not show under steady conditions.
(v) Oscillation of cathode follower load valve in R. 3066 (V_{10} in fig. 22). (See' Memo. 29, Radio Department/R.A.E.).
(i) Turn bias controls fully clockwise.
(ii) Check 80 -volt A.C. supply to receiver.
(iii) Check cable from receiver to indicating unit.
(iv) Check supply voltages for the cathode ray tubes at the 6 -pin plug on the receiver.
(v) Check reservoir condenser and rectifier valve in receiver $\left(\mathrm{C}_{59}\right.$ and V_{13} in fig. 22, C_{44} and V_{14} in fig. 28) and smoothing condensers in the indicating unit (C_{8} and C_{9} in figs. 33 and 34).
(i) Check cathode ray tube concerned.
(ii) Short circuit in external high tension supply to cathode ray tube, indicated by overheating of resistors R_{25} or R_{26} in indicating unit (see figs. 33 and 34).
(i) Excessive brightening due to incorrect setting of BRIGHTNESS control.
(i) Incorrect setting of BRIGHTNESS control.
(ii) Check phase-reversing valve (V_{2} in figs. 33 and 34).
(i) Mismatch of valves in transmitter.
(ii) Incorrect adjustment of filament tuning chokes in transmitter.
(iii) Check transmitter aerial, feeder and W-plug in the nose of fuselage.

FAULT-FINDING CHART-continued

FAULT \quad INSPECTION AND REMEDY
15. Faint mirror images occurring on both sides of the time base.
16. Jitter
17. Bands parallel to time base (C.W. oscillation due to instability of R.F. and I.F. stages).
18. Intermittent indications on tubes
19. Some echoes not as brilliant as others.. ..
20. Flickering echoes in (i) amplitude or (ii) brilliancy.
21. Periodic interference at regular 6 -second intervals at minimum range.
22. Excessive noise
23. Inability to suppress direct transmitter pulse. .
24. Poor maximum range

Aerials

25. Aerial squint
26. Voltage varying with engine speed

Control panel

27. Extreme difficulty in adjusting carbon pile ..
(i) Due to overlapping of output and input contacts in switch unit (see para. 64).
(i) Check switch motor speed.
(ii) Check supply voltage to switch motor.
(iii) Check A.C. supply and carbon pile voltage regulator in control panel, type 3, for any signs of hunting (can sometimes be heard).
(iv) Check connections on 80 -volt A.C. generator.
(i) Check decoupling condensers in all R.F. and I.F. stages.
(ii) Check seating of all R.F. and I.F. valves.
(i) Maladjustment of switch motor contacts.
(ii) Check that all co-axial sockets are firmly connected.
(i) Incorrect angles of contact on switch unit, type 39 (see para. 61).
(i) Dirty contacts in switch unit at the input section.
(ii) Dirty contacts in switch unit at the output section.
(i) Ascertain that I.F.F. receiver is set correctly.
(ii) Check delayed priming pulse lead to I.F.F. receiver (orange connector and plug).
(i) Check for noisy R.F. and I.F. valves.
(ii) Check to see if oscillator coupling is too tight.
(iii) Interference may be caused by switch motor (see item 31 (ii)).
(i) Check delayed priming pulse lead to receiver.
(ii) Check suppression stage in receiver.
(iii) Faulty suppressor valve (V_{4} in fig. 22, V_{12} in fig. 28).
(i) Incorrect adjustment of transmitter.
(ii) Check current at $\mathrm{J}_{1}\left(80 \mathrm{~mA}\right.$.) and $\mathrm{J}_{2}(40 \mathrm{~mA}$.) on modulator.
(iii) Check transmitter aerial, feeder and W-plug in nose of fuselage.
(i) Check aerial spacing with template.
(ii) Inspect aerial bollards for fracture and presence of moisture.
(iii) Check contact continuity in switch motor and connections to switch motor.
(iv) Check all co-axial plugs and sockets, including those at wing root.
(v) Check earthing clip on support tube.
(vi) Inspect for mechanical heat and moisture damage of aerial feeder cables.
(vii) Check bonding on skin of acroplane and on matching tubes.
(i) Check control panel voltage regulator.
(i) Check to see that correct type of A.C. generator is fitted.
(ii) See that condenser C_{1} (see fig. 11 and para. 14) is set correctly for type of alternator.
(iii) See if arcing is occurring between carbon discs of voltage regulator.
(iv) Inspect carbon pile for presence of moisture.

S.D. 0165 (1), CHAP. 1

FAULT-FINDING CHART-continued

FAULT		
Modulator		
28. (i) No transmitter output		
(ii) Low transmitter output		
(iii) Cut-out keeps tripping. (When makins tests, remove high-tension leads from the screen gricls of type V.T.75A valves and connect grids to earth).		

Transmitter

29. (i) Poor or no output
(ii) Frequency instability
(i) Check current with high resistance voltmeter at plug J_{1} (100 mA . is equivalent to 1 volt). The current should be 80 mA .
(ii) Check current at the plug J_{2}. This should be 40 mA .
(i) Check transmitter, transmitter acrial, feeder and W-plug in nose of fusclage.
(ii) Mcasure currents at plugs $\mathrm{J}_{1}\left(80 \mathrm{~mA}\right.$.) and J_{2} (40 mA .) on modulator. if these currents are low, the condensers C_{9} or C_{11} on screens of modulator valves V_{3} to V_{8} (see fig. 13) may have broken down.
(i) Check transmitter, transmitter acrial, feeder and W-plug in nose of fuselage.
(ii) Check type V.T.75A valves in modulator (V_{5} to V_{8} in fig. 13).
(iii) Check coil assembly, particularly condenser C_{14}.
(iv) Sec if there is a fractured connection on $0 \cdot 004 \mu \mathrm{~F}$. condenser (C_{7} in fig. 13) in multivibrator.
(け) Check for negative voltage of 300 volts on grids of type V.T.75A valves.
(i) Test for output by means of neon lamp held near transmitter aerial or by holding screwdriver to obtain sparks from aerial, with equipment switched on.
(ii) See that blower operates when control panel is switched on.
(iii) With modulator switch in the position "L.T. ON " look through louvres of the transmitter to see that valves are alight.
(iv) If time base is obtained on indicating unit but transmitter is not oscillating, there may be a short on the leads from modulator to transmitter.
(v) If the above leads are found to be satisfactory, the transmitting valves may have become soft. Measure current taken by the transmitter with a low-resistance milliammetcr or a highresistance voltmeter $(100 \mathrm{~mA}$. is equivalent to 1 volt) at plug J_{2}. The current should be 40 mA . If valves are soft, current will be high.

INSPECTION AND REMEDY

(i) Check transmitter valves.
(ii) Check adjustment of filament tuning chokes.
(iii) Check aerial feeder for moisture and heat and mechanical damage, and W-plug in nose of fuselage. Replace feeder, if oxide has formed on braid.
(iv) Ensure that shorting bar is clean and making good connection.
(v) Check length of transmitter fceder. If length is correct, add 4 in. long section. If no improvement is noted, short lengths (TOTALLING NOT MORE THAN 7 IN.) may be removed to produce stable results. Care should be exercised in this operation to avoid scrapping feeder.

FAULTT-FINDING CHART--continued
FAULT \quad INSPECTION AND REMEDY

Receiver

30. (i) Low " noise" level on indications.
(ii) No " noise " even with maximum gain on indications.
(iii) No four-peint tuning on receiver, type R. 3066 .

Switch unit

31. (i) Switch not running
(ii) Interference cluc to switch

Indicating unit

32. Indications, poor or absent
(i) Check supply voltages to the receiver.
(ii) Check tuning of R.F. and mixer stages.
(iii) Replace R.F. valve or valves (V_{1} in fig. 22 or V_{1} and V_{2} in fig. 28).
(iv) Replace local oscillator (V_{3} in fig. 22, V_{4} in fig. 28) .
(v) Check video-amplifier in R.3102A. (V_{9} in fig. 28).
(i) Check that connections to indicating unit are satisfactory.
(ii) Check H.T. and L.T. supplies to receiver. If no H.T. verify that there is not a short to earth.
(iii) Check rectifier valve (V_{14} in fig. 22, V_{13} in fig. 28)
(iv) Scratch grid lead of mixer valve (V_{2} in fig. 22 and V_{3} in fig. 28) with a screwdriver. If flickers are obtainable the I.F. and detector portions of the receiver are serviceable.
(v) Check R.F. valve or valves (V_{1} in fig. 22 and V_{1} and V_{2} in fig. 28) and local oscillator valve ($\mathrm{V}_{:}$ in fig. 22, V_{4} in fig. 28).
(vi) Inspect wiring and check potentials at valve tags of R.F. and local oscillator valves
(vii) If $n o$ flicker is obtainable in test in sub-para. (iv), check valves in I.F. and detector stages.
(viii) Inspect wiring and check potentials of the I.J., detector and cathode follower stages.
(i) Incorrect spacing of local oscillator coil in receiver, type R .3066 (L_{8} in fig. 22).
(ii) Incorrect frequency setting of transmitter.
(i) See that D.C. supply is reaching switch.
(ii) Sec that mica is not proud of copper segments.
(i) Clean commutator.
(ii) Sec that mica is not proud of copper segments.
(i) Check voltages at pins of cathode ray tube. If H.T. supply is faulty, see that there is no short to earth in inclicating unit or receiver before replacing rectifier valve (V_{13} in fig. $22, \mathrm{~V}_{14}$ in fig. 27).
(ii) Check high-voltage condensers C_{8} and C_{9} (figs. 33 and 34).
(iii) Check insulation to carth of all potentiometers.

APPENDIX 1

NOMENCLATURE OF PARTS

The following list of parts is issued for information only. In ordering spares the appropriate section of Air Publication 1086 must be used. Where components are peculiar to one type of unit this is indicated under "Remarks." The references in column four are to the circuit diagrams in this publication.

10C/2940

Consisting of :-
Choke, L.F., type 101

Laminated iron core, 2,000 turns of $33 \mathrm{~s} . w . g$. enamelled copper wire D.C. resistance 70-100 ohms. Test 3,000 volt R.M.S. Tropical

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Modulator unit, type 13 (contd.) Consisting of (contcl.) :-			
	Valve			
10E/388	Type VR. 505	1	V_{1}	
10E/387	Type VT.75A	5	$\mathrm{V}_{2}, \mathrm{~V}_{5}, \mathrm{~V}_{6},$	V_{2} may be replaced by a valve VT.75B, Ref. No. 10E/472. Spec. No. D.C.D. W.T. 1254
10E/19	$\begin{gathered} \text { Type VU. } 113 \\ \text { or } \end{gathered}$	2	$\} \quad V_{3}, V_{4}$	
$\begin{aligned} & 10 \mathrm{E} / 146 \\ & 10 \mathrm{DB} / 250 \end{aligned}$	Type VU. 111 Transmitter, type T. 3065	2		80 volt A.C. with 24 -volt D.C.
	Transmitter, type T.306s			blower
10K/12084	Consisting of :Blower, air, type C	1		24-volt operation
	Fitted with:-			
$10 \mathrm{~A} / 12475$ $10 \mathrm{~A} / 13670$	Grommet, type 1	5		
10A/13670	Gasket, type 18			3 in . inside dia. by 0.312 in . thick
5C/430	Block, terminal, 2-way, No. 1	1		
$10 \mathrm{DB} / 748$	Bracket and tay plate assembly	1		Bracket, complete with terminal
10C/2945	Choke-unit, type 9 ..	1		Grid choke. Used on Serial Nos. 11-610 only
10C/5278	Fitted with:Choke, H.F., type 302 .	1	L_{2}	16 turns of 30 s.w.g. D.S.C. wire on tufnol former
10C/5279	Gricl tine	2		Nickel silver strip
10C/52812	Mounting panel	1		Tufnol sheet
10C/3615	Choke unit, type 11 .	1		Grid choke. Used on Serial Nos. 611 onwards
10C/5278	Fitted with :- Choke, H.F., type 302 .	1	L_{2}	16 turns of 30 s.w.g. D.S.C. wire on tufnol former
10C/5279	Gricl line	2		Nickel strip
$10 \mathrm{AB} / 601$	Clamp, type 15	4		Spring clip slotted to fit shank of terminal. Clamps lead from valve, type VT.90, to terminals on the filter unit, type $13,10 \mathrm{~PB} / 23$
10AB/1225	Cover:- Type 122	1		Dust cover, less louvred top plate. Used on Serial Nos. 11-610 only
10AB/1226	Type 123	1		Louvred top plate. Used on Serial Nos. 11-610 only
$10 \mathrm{AB} / 371$	Type 30	1		Light tight covers to fit over louvres on front of instrument. Used on Serial Nos. 11-610, only
$10 \mathrm{AB} / 376$	Type 33. Or	1		Tight tight covers to fit over louvres on top of instrument. Used on Serial Nos. 11-610 only
10AB/506	Type 52.	1		Dust cover
$10 \mathrm{AB} / 507$	Type 53...	1		Top cover plate
$10 \mathrm{AB} / 508$	Type $54 .$.	1		Louvred light shield to fit on front of instrument

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
10AB/1227	```Transmitter, type T. 3065 (contd.) Consisting of (contd.) Cover (contd.) :- Type 124```	1	Fig. 17	$3 \frac{1}{8} \mathrm{in}$. long by $1 \frac{5}{8} \mathrm{in}$. wide by 0.080 in. thick
10C/2946	Resistance unit, type 105..	1		Comprises tufnol panel
10C/1105	Fitted with:Resistance, type 1105 ..	1	R_{1}	56 ohms ± 10 per cent., 1 watt, carbon rod type
10DB/359	Coupling unit, type 9	1		Aerial lecher assembly
$10 \mathrm{DB} / 750$	Fitted with:Aerial coupling assembly	1		Silver-plated rings, mounted on support rods
$10 \mathrm{DB} / 751$	Aerial coupling assembly	1		Silver-plated rings, mounted on support rods
$10 \mathrm{DB} / 752$	Tube	2		$\frac{3}{16}$ in. long by 0.140 outside dia. by $0 \cdot 105$ inside dia. split longitudinally
$10 \mathrm{DB} / 753$	Spacing block	1		Loaded ebonite, $6 \frac{3}{4} \mathrm{in}$. by 1 in . by $\frac{1}{2} \mathrm{in}$.
10DB/754	Gruide	4		Steel angles, cadmium plated
10AB/1228	Clamp, type $62 .$.	1		15 in . by $\frac{1}{2} \mathrm{in}$. wide, $1 \frac{1}{4} \mathrm{in}$. fixing centres to fit tube $\frac{11}{16}$ in. dia.
10AB/1229	Link, type 3 .	1		Brass strip, silver-plated, $\frac{1}{8} \mathrm{in}$. by $\frac{1}{4}$ in. wide
10DB/755	Ferrule . . .	2		$\frac{1}{2}$ in. by $\frac{9}{16}$ in. outside dia. by $\frac{1}{2}$ in. inside dia.
$10 \mathrm{DB} / 503$	Coupling unit, type 18 .	1		Anode lecher assembly
10DB/756	Fitted with:- Air chamber	1		Moulded bakelite
10DB/757	Anode lecher assembly	2		Silver-plated, complete with flange riveted and soldered on to form gland
$10 \mathrm{DB} / 758$	Valve clip assembly	2		Tapped 4 B. A. for thumb screw
$10 \mathrm{DB} / 759$	Valve clip assembly	2		Urilled to clear 4 B.A.
$10 \mathrm{DB} / 760$	Thumb screw ..	2		4 B.A. knurled head $1 \frac{13}{32}$ in. long overall, $\frac{3}{8}$ in. dia. head
$10 \mathrm{DB} / 761$	Bridge, top section . .	1		Brass pressing
10DB/762	Bridge, bottom section..	1		Brass pressing, fixed to top section by 2 B.A. rd. hd. brass screw
$10 \mathrm{DB} / 763$	Tube support	2		Moulded bakelite, $3 \frac{5}{8}$ in. by 11 in. dia.
10C/2944	Choke, H.F., type 133.	1		H.T. input, comprising 7 turns of $20 \mathrm{~s} . \mathrm{w} . g$. D.S.C. wire covered with sleeving on tufnol former.
10AB/23	Filter unit, type 13 .	2		Filament filter
$\begin{aligned} & 10 \mathrm{~A} / 12348 \\ & 10 \mathrm{~PB} / 46 \end{aligned}$	Fitted with:Knob, type 35 .. Locknut..	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		Moulded black for $\frac{1}{4}$ in. spindle Knurled, to clamp knobs, type 35
10DB/764	Panel assembly	1		Chassis, comprises front and back panels and base
$10 \mathrm{DB} / 765$	Backing strip assembly ..	2		Mild steel, $13 \frac{1}{8}$ in. by $\frac{3}{8}$ in. by 3 in . with two 4 B.A. by $\frac{7}{8}$ in. ch. hd. screws welded in, fitted inside flanged edge of base of panel assembly

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Transmitter, type T. 3065 (contcl.) Consisting of (contrl.) :-		Fig. 17	
$10 \mathrm{DB} / 766$	Backing strip	2		Mild steel, $6 \frac{1}{2}$ in. by $\frac{3}{8}$ in. by $3_{3}^{\frac{3}{2}} \mathrm{in}$., fitted inside flanged cdge of back and front panels at top.
101)B/767	Backing strip ..	4		Mild steel, $9 \frac{9}{16}$ in. by $\frac{3}{8}$ in. by 3 in .
$10 \mathrm{DB} / 768$	Supporting strap	2		Side members of chassis
101) B/769	Rubber slecve	2		1 in . long by $\mathrm{m}^{i} \mathrm{i}$ in. outside dia. by \quad in. inside dia.
10DB/770	Screw (special) .	10		Flat cheese head 4 B.A. by 0.460 in . long overall
101)B/771	Circlip	10		$\frac{1}{8}$ in. inside dia. 20 s.w.g. wire
10DB/772	Tube	1		Brass $\frac{11}{16} \mathrm{in}$. clia. by 8 in. long slotted one end
$10 \mathrm{AB} / 1230$	Clamp, type 63	1		13rass, dull nickel-plated
$\begin{aligned} & 10 \mathrm{E} / 97 \\ & 101 \mathrm{D} / 547 \end{aligned}$	Valve, type V.T. 90 Transmitter, type T. 3065 A	2 1	V_{1}, V_{2}	80 volt A.C. with 12 volt D.C.
				blower. Identical with transmitter, type T.3065, except that blowers, air, type B (Ref. No. 10K/12083), 12 volt, replaces type C (Ref. No. $10 \mathrm{~K} / 12084$), 24 volt
$10 \mathrm{DB} / 701$	Transmitter, type T.3065B	1		80 volt A.C. with 24 volt D.C. blower. Improved version of transmitter, type T.3065. Louvred top cover replaced by plain cover, wing nuts replaced by cheese headed screws, black finish replaced by french-gray finish. litted with blowers, air, type C (Ref. No. 10K/12084). 24 volt
$10 \mathrm{DP} / 251$	Recciver, type R. 3066 . . or	1	Fig. 22	So volt A.C. with 24 volt D.C. switch unit
101) B/347	Receiver, type R.3066A	1		80 volt A.C. with 12 volt D.C. switch unit
10H/13245	Consisting of :Connector, type 901	5		Cable, uniradio No. 4, 12 in
$\begin{aligned} & 10 \mathrm{H} / 701 \\ & 10 \mathrm{H} / 13246 \end{aligned}$	Fitted with :2 sockets, type 213 Connector, type 902	5		S.P. concentric Cable, uniradio No. 6, 173 in.
$10 \mathrm{H} / 529$	Fitted with:-2 sockets, type 187			S.P. concentric
10A B/1375	Cover, type 141 ..	1		Sheet steel dust cover, $19 \frac{18}{18} \mathrm{in}$. by $12!$ in. by 20 B. G., louvred
10A/12308	Knob, type 34	2		Moulded black, for $\frac{1}{4} \mathrm{in}$. spindle, engraved with white spot
	Plug :-			
$\begin{aligned} & 10 \mathrm{H} / 391 \\ & 10 \mathrm{H} / 394 \end{aligned}$	Type W. 201	1	$\mathrm{P}_{1}{ }_{1}$	6 pin
$10 \mathrm{H} / 628$	'уpe W. 246	9		S.P. concentric, double ended
$10 \mathrm{~KB} / 140$	Power unit, type 77	1		
$10 \mathrm{~KB} / 516$	Consisting of :Base plate assembly	! 1		Shect steel, $4 \cdot 3 \mathrm{in}$. wicle by 10 in by $2 \frac{1}{2}$ in. high by 18 B. $($.

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Receiver, type R. 3066 or $R .3066 \mathrm{~A}$ (contd.) Consisting of (contd.) Receiving unit, type 26 (contd.) Consisting of (contd.) Resistance (contd.):-		Fig. 22	
10C/1014	Type $1014 . .$.	12	$\begin{aligned} & \mathrm{R}_{1}, \\ & \mathrm{R}_{16}, \mathrm{R}_{16}, \\ & \mathrm{R}_{19}, \\ & \mathrm{R}_{31}, \\ & \mathrm{R}_{23}, \mathrm{R}_{28}, \\ & \mathrm{R}_{50}, \\ & \mathrm{R}_{51}, \\ & \mathrm{R}_{52} \end{aligned}$	500 ohms, ± 10 per cent., $\frac{1}{10}$ watt, carbon
10C/6872	Type 6872.	1	R_{33}	200 ohms, ± 10 per cent., r $_{10}^{10}$ watt, carbon
10C/1021	Type 1021 .	3	$\mathrm{R}_{3}, \mathrm{R}_{11}, \mathrm{R}_{48}$	25,000 ohms, ± 10 per cent. $\frac{1}{4}$ watt, carbon
10C/1011	Type 1011..	3	$\mathrm{R}_{17}, \mathrm{R}_{24}, \mathrm{R}_{29}$	22 ohms, ± 10 per cent., $\frac{1}{1}$ watt, carbon
10C/816	Type 922	3	$\mathrm{R}_{4}, \mathrm{R}_{10}, \mathrm{R}_{15}$	50,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
10C/9634	Type 272	1	R_{14}	50,000 ohms, ± 10 per cent., 1 watt, carbon
10C/1017	Type 1017 .	4	$\mathrm{R}_{2}, \mathrm{R}_{7}, \mathrm{R}_{13}, \mathrm{R}_{46}$	1,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
10C/1019	Type 1019.. .	1	R_{36}	3,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
10C/1454	Type 1454.	1	R_{5}	15,000 ohms, ± 10 per cent., 4 watt, carbon
10C/812	Турс 918	2	$\mathrm{R}_{9}, \mathrm{R}_{53}$	10,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
10C/811	Type 917	1	R_{8}	5,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
10C/1033	Type 1033..	2		250 ohms, ± 10 per cent., $\frac{1}{2}$ watt, wire wound
10C/1214	Type 1214.	1	R_{39}	10,000 ohms, ± 10 per cent., 6 -watt, wire wound
10C/1025	Type 1025	1	R_{42}	10,000 ohms, potentiometer, wire wound, 1 in . spindle by $\frac{1}{4} \mathrm{in}$. dia. tolerance, ± 20 per cent.
10C/7872	Type 7872	1	R_{12}	20,000 ohms, ± 10 per cent., potentiometer, wire wound, $\frac{9}{16} \mathrm{in}$. spindle by $\frac{1}{4} \mathrm{in}$. dia.
10H/701	Socket, type 213 ..	1		S.P. concentric
10A/13839	Screen:- Type 48	1		Tinplate 26 B.G. $3 \cdot 88 \mathrm{in}$. by 2.78 in . by $3 \frac{1}{4} \mathrm{in}$.
10A/13840	Type 49	1		Tinplate 26 B.G. $3 \cdot 88$ in. by 2.78 in . by $3 \frac{1}{4} \mathrm{in}$.
10A/13841	Type 50	1		Tinplate 26 B.G. 3 in. by $3 \cdot 36 \mathrm{in}$. by $1 \frac{3}{4} \mathrm{in}$.
10A/13353	$\text { Type } 37 \text {. .. }$	5		'Tinplate 26 B.G. 1.88 in. by 3 in. by $1_{4}^{3} \mathrm{in}$.
$10 \mathrm{~PB} / 49$	Thyratron bracket assembly.	1		Shect steel bracket 16 B.C. (45630)
10A/13842	Fitted with :Cap, valve, type 30	1		Pressed from 26 s.w.g. M.S. for V.G.T. 121
10C/94	Condenser:Type 609	1	C_{62}	$0.0005 \mu \mathrm{~F}, \quad \pm 15$ per cent. 350 volt, D.C. working, mica, moulded

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Receiver, type R.3066, or R.3066A (contd.) Consisting of (contd.) Receiving unit, type 26 (contd.) Consisting of (contd.) Thyratron bracket assembly (contd.) Fitted with (contd.) Condenser (contd.)		Fig. 22	
10C/2025	Type 935	1	C_{63}	$0.001 \mu \mathrm{~F} .$, + infinity -25 per cent. 350 volt. D.C. working, mica, moulded, side wires
10H/15	Holder, valve, type 32	1		British octal, for V.G.T. 121 $1 \frac{1}{2} \mathrm{in}$. fixing crs.
10H/528	Plug, type 229	1		S.P. concentric, front mounting
10C/819	Resistance :- Type 925	1	R_{21}	250,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
10C/1017	'Гуpe 1017 ..	1	R_{20}	1,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon
$10 \mathrm{AB} / 296$	2 springs, type 4 ..			Tension 31 turns, $\cdot 17$ in. d. (Int.) $1 \cdot 04$ in. centres. Rust proofed
$10 \mathrm{~PB} / 50$	Valve (V.R.91) Plate Assembly Fitted with :-	1		Shcet steel bracket $2 \frac{1}{2}$ in. by $3 \frac{1}{2}$ in. by 16 B.G. (45581)
10A/13842	Cap, valve, type 30	1		Pressed from 26 s.w.g. M.S. for V.R. 91
10H/150	Holder valve :Type 40 ..	1		Small diode with clip for V.R. 92
10H/379	Type $62 . .$.	1		9-pin, with earthing clip for V.R. 91
10H/528	Plug, type 229 ..	1		S.P. concentric, front mounting
10C/1018	Resistance:- Type 1018	1		2,000 ohms, ± 10 per cent., 4 watt, carbon
10C/1097	Type 1097	2	$\mathrm{R}_{44}, \mathrm{R}_{49}$	$\frac{1}{2}$ megohm, ± 10 per cent., $\frac{1}{4}$ watt carbon
10ゼ/92	Valve:- Type V.R. 91	7	$\begin{aligned} & \mathrm{V}_{5}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \mathrm{~V}_{8}, \\ & \mathrm{~V}_{9}, \mathrm{~V}_{10}, V_{11} \end{aligned}$	9-pin, screened pentode
101E/11452	Type V.R. 59 .	1	${ }^{9}, \mathrm{~V}_{3}{ }^{11}$	6.3-volt heater, acorn, triode
10E/95	Type V.R. 95 .	2	$\mathrm{V}_{1}, \mathrm{~V}_{2}$	6.3-volt heater, acorn, pentocle
10E/164	Type V.G.'T. 121	1	V_{4}	British octal, thyratron 6.3-volt heater diode
10E/101 $10 \mathrm{FB} / 202$	Type V.IR. 92 Switch unit, type $42 \quad \cdots$	1		6.3-volt heater, diode 12 -volt, motor-driven, complete.
10FB/202	Switch unit, type 42 ..	1		12-volt, motor-driven, complete. R. 3066 only
$10 \mathrm{FB} / 198$	Switch unit, type 39	1		24-volt, motor-driven, complete. R.306GA only
10FB/393	Fitted with :Contact assembly	8		Spring contact, complete with concentric plug (1-pin)
10FB/394	Blacknut (special) ..	8		For use with contact assemblies. 10FB/393
10FB/395	Contact ring . .	8		
10FB/396	Contact post .	8		

IRef. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Receiver, type R.3066A (contcl.) Consisting of (contd.) Switch unit, type 39 (contd.) Fitted with :-		Fig. 22	
10FB/397	Ball race with insulating ring or	2		Hoffman ball race No. 4666
10DB/702	Receiver, type R.3102A	1	Fig. 27	80 -volt A.C. with 12 -volt I).C. switch unit
5C/430	Consisting of :- Block, terminal, type B, 2-way, No. 1	1		Moulded black, $1 \frac{1}{2} \mathrm{in}$. by 1 in .
10A/13784	$\begin{aligned} & \text { Cover :- } \\ & \text { Type } 136 \end{aligned} \quad . .$	1		Case body assembly, with louvred end panel
10A/13785	Type 137	1		Louvred dust cover assembly, complete with 6 Dzus fasteners
10A/13786	Type 138	3		Fitted over pre-set spindle holes on front panel, $0.048-\mathrm{in}$. M.S. plate
10C/5371	Choke, H.F. :--- Type 309	2	L_{26}, L_{28}	$0.5 \mu \mathrm{H}, 8$ turns of 22 s.w.g. D.C.C. cu. wire, ${ }^{16}$ in. inside dia. by $\frac{3}{8}$ in. mix. length, air core
10C/3592	Type 310 .. .	2		$1.3 \mu \mathrm{H}, 15$ turns of 22 s.w.g. D.C.C. cu. wire, air core
10C/3220	Type 150	5	L_{5} to L_{9}	Filament
10C/2596	Choke, L.F.:- Type 89	1	L_{21}	Smoothing (indicator)
10C/3221	Choke, H.F., type 151	1	L_{18}^{21}	
10C/2595	Choke, L.F., type 88	1	L_{20}	Smoothing
10H/13694	$\begin{array}{cl} \text { Clip :- } \\ \text { Type } 81 \end{array}$	1		Condenser ($10 \mathrm{C} / 2634$) clip, 1 in. i.d., $0 \cdot 032 \mathrm{in}$. M.S.
10H/13695	Type $82 . .$.	2		Clip for tube (cable), Ref. No. 10A/13817 Phos. bronze, $\frac{15}{16} \mathrm{in}$. high by $\frac{5}{8}$ in. wide
10DB/800	$\begin{array}{lll} \text { Coill:-- } \\ \text { I.F. (Grid) } & \ldots & . \end{array}$	3	$\mathrm{L}_{11}, \mathrm{~L}_{13}, \mathrm{~L}_{15}$	Moulded bakelite former wound with 10 turns of 26 s.w.g. D.S.C. cu. wire retained by paxolin collar
10DB/801	I.F. (Diode)	1	L_{17}	As coil I.F. (Grid), but wound with 16 turns of 24 s.w.g. D.S.C. cu. wire. Marked with 2 orange spots
101)B/802	I.F. (Anode)	4	$\begin{aligned} & \mathrm{L}_{10}, \mathrm{~L}_{12} \\ & \mathrm{~L}_{14}, \mathrm{~L}_{16} \end{aligned}$	As coil, I.F. (Grid), but wound with 15 turns of 24 s.w.g. D.S.C. cu. wire. Marked with 2 black spots
1012B/803	Aerial and bracket assembly	1	L_{1}	Moulded bakelite former fitted with 2 paxolin collars wound with $4 \frac{1}{2}$ turns of s.w.g. silver plated cu. wire, $5 / 6$ of a turn of $7 / 33$ rubber covered grade E" yellow wire. Marked with 2 green spots

S.D. 0165 (1), CHAP. 1

Ref. N ¢	Nomenclature	Quantity	Ref. in fig.	Remarks
	Receiver, type R3102A (contd.) Consisting of (contd.) Condenser (contd.) :-		Fig. 27	
10C/2624	Type 1248	1	C_{48}	$0 \cdot 1 \mu \mathrm{~F} . \pm 25$ per cent., 450 volt D.C. working, paper, tubular end wires
10C/4485	Type 2311	3	$\mathrm{C}_{6}, \mathrm{C}_{14}, \mathrm{C}_{16}$	$8 \mu \mu \mathrm{~F} . \pm 10$ per cent., 500 volt D.C. working, ceramic tube
10C/4484	Type 2310	1	C_{1}	$3 \mu \mu \mathrm{~F} . \pm 10$ per cent., 500 volt D.C. working, ceramic tube
10C/4501	Type 2327	1	C_{40}	$50 \mu \mathrm{~F}$. + infinity -10 per cent. 6 volt D.C. working, electrolytic, one hole fixing, end wires
10C/4502	Type 2328	6	$C_{5}, C_{366} \text { to } C_{49}$	$0.001 \mu \mathrm{~F}$. + infinity -25 per cent., 350 volt D.C. working, mica, moulded, end wires
10C/5425	Type 2927	1	C_{12}	$0 \cdot 002 \mu \mathrm{~F} . \pm 10$ per cent., 350 volt D.C. working, mica, moulded
10C/963	Type 895	1	C_{50}	$0 \cdot 0001 \mu \mathrm{~F} . \pm 15$ per cent., 500 volt D.C. working, mica, moulded, tag end
10C/2719	Type 1322	1	C_{15}	$0 \cdot 0002 \mu \mathrm{~F} . \pm 10$ per cent., 350 volt D.C. working, mica, moulded, end wires
10C/4470	Condenser unit, type 57 Fitted with	1		Tag and insulating panels, nuts and screws
10C/8382	Condenser, type 172	1	C_{49}	$0 \cdot 25 \mu \mathrm{~F} . \pm 15$ per cent., 375 volt D.C. working, paper, tubular end wires
10C/11623	Resistance, type 490	1	R_{41}	10,000 ohms, ± 10 per cent., 2 watts
10A/12380	Coupling, type 5 ..	1		
10A/13791	Dial, type 18-..	1		Local tuning dial-complete
10A/13792	Fitted with :- Knob, type 163	1		Moulded black, $\frac{7}{4}$ in. spindle, 1.7 in. o.d., fitted with stop lever
10A/13793	Scale, type 10 ..	1		Engraved " 0-5" and "TUNE"
10A/13794	Washer	1		Phos. bronze
10A/13795	Washer	1		Cork
10A/13796	Washer .	1		M.S.
10A/13797	Spindle ..	1		M.S.
10A/13798	Stop pin . . .	1		Brass
10A/13799	Control head mounting	1		
10H/491	Holder, valve :Type 72 .	3		British octal, moulded oval fange $1 \frac{7}{8}$ in. 1.9 in., $1 \frac{1}{2}$ in. fixing centres
10H/499	Type $75 \ldots$	1		4-pin for V.U. 39 and V.U.39A
10H/379	Type $62 .$.	7		9-pin for V.R. 91
$10 \mathrm{H} / 150$	Type 40 ..	2		For V.R. 92 (diode) with clip
10H/517	Type 76.	1		Ceramic, for V.U. 134
10C/3166	Inductance:- Type 209	1	L_{19}	Compensating coil, 2 coils wound in series, each of 130 turns of 40 s.w.g., D.S.C. cu. wire, on moulded former fitted with 4 tags

Ref. No.	Nomenclature	Quantity	Ref. in fig.	R'emarks
	Indicating unit, type 20 (contd.) Consisting of (contd.)			
10C/2025	Condenser, type 935 ..	1	C_{2}	$0.001 \mu \mathrm{~F}$. ${ }_{-25}^{+00}$ per cent. 350 -volt D.C. working, mica, moulded, sidewires
10C/1684	Resistance, type 1684.	1	R_{3}	$2 \cdot 1$ megohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon rod type
10C/10843	Resistance, type 426 . .	1	R_{6}	1,500 ohms, ± 10 per cent., 1 watt, carbon rod type
10C/808	Resistance, type 914 ..	1	R_{5}	300 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon rod type
10C/4056	Condenser and resistance unit, type 122	1		$\frac{1}{16}$ in. thick bakelite panel and tags L.H.
10C/2590	Fitted with :Condenser, type 1228 ..	1	C_{3}	$0.01 \mu \mathrm{~F} ., \pm 10$ per cent., $3,000-$ volt D.C. working, paper, tubular
10C/1454	Resistance, type $1454 .$.	1	R_{22}	15,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon rod type
10C/819	Resistance, type 925 ..	1	R_{20}	$\frac{1}{4}$ megohm, ± 10 per cent., $\frac{1}{4}$ watt, carbon rod type
10C/1831	Resistance, type $1831 .$.	1	R_{24}	$\frac{1}{2}$ megohm, ± 5 per cent., 1 watt, carbon rod type
10C/4057	Condenser and resistance unit, type 123	1		${ }^{-\frac{1}{16}}$ in. thick bakelite panel and tags R.H.
10C/2590	Fitted with :Conclenser, type 1228 . .	1	C_{4}	$0.01 \mu \mathrm{~F} ., \pm 10$ per cent., $3,000-$ volt. D.C. working, paper, tubular
10C/1454	Resistance, type $1454 .$.	1	R_{9}	15,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon rod type
10C/819	Resistance, type 925	1	R_{14}	$\frac{1}{4}$ megohm, ± 10 percent., $\frac{1}{4}$ watt, carbon rod type
10C/1831	Resistance, type 1831 .	1	R_{11}	$\frac{1}{2}$ megohm, ± 5 per cent., 1 watt, carbon rod type
10C/4058	Condenser and resistance unit, type 124	1		$\frac{1}{16}$ in. thick bakelite panel with tags
10C/3030	Fitted with :Condenser, type 1441 .	1	C_{1}	$0 \cdot 25 \mu \mathrm{~F}$., ± 10 per cent., 450 -volt, D.C. working, paper, tubular, wire ends
10C/1658	Resistance, type 1658.	1	R_{1}	150,000 ohms, ± 10 per cent., a watt, carbon rod type
10C/819	Resistance, type 925 .	1	R_{13}	$\frac{1}{4}$ megohm, ± 10 per cent., $\frac{1}{4}$ watt, carbon rod type
10C/2025	Condenser, type 935 Grommet :-	1	C5	$0.001 \mu \mathrm{~F} ., \underset{-20}{1000}$ per cent., 350 volt, D.C. working, mica, moulded, side wires
10A/12488	Type 5	1		1 in. inside dia.
10A/12489	Type 6	1		Para rubber
10H/379	Holder, valve :- Type 62	2		9-pin with centre earth clip, loctal
10H/821	Type 103 ..	2		9-pin for C.R.T. type A. 41 G.4A
10A/12308	Knob, type 34			Moulded, black, with white spot, drilled for $\frac{1}{4}$ in. spindle
10AB/312	Mask, C.R.T., type 2			Moulded rubber

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Indicating unit, type 48 (contd.)			
10C/4058	Condenser-resistance unit, type 124	1		
10C/221	Condenser, type 2958	1	C_{1}	$0 \cdot 25 \mu \mathrm{~F} ., \pm 15$ per cent., 450 volt D.C. working paper, tubular side wires, non-inductive, tropical
10C/1658	Resistance:- Type 1658	3	$\mathrm{R}_{1}, \mathrm{R}_{29}, \mathrm{R}_{30}$	150,000 ohms, ± 10 per cent.,
10C/819	Type 925 .. \quad.	3	$\mathrm{R}_{14}, \mathrm{R}_{20}, \mathrm{R}_{13}$	1 watt 250,000 ohms, : 10 per cent.,
10C/4129	Condenser-resistance unit, type 129	1		Bakelite panel and tags, L.H. $2 \frac{3}{4} \mathrm{in}$. by 2 in . by $\frac{1}{16} \mathrm{in}$. thick
10C/1454	Resistance:- Type 1456	2	$\mathrm{R}_{9}, \mathrm{R}_{22}$	2,500 ohms, $t 10$ por cent., 4 watt
10C/7602	Type 72	2	$\mathrm{R}_{11}, \mathrm{R}_{24}$	500,000 ohms, ± 5 per cent. 1 watt
$10 \mathrm{AB} / 1378$	Cover:- Type 144	1		Mild steel, $15 \frac{1}{4}$ in. by $12 \frac{7}{16}$ in. by 20 B.G. with insulating plate
10AB/1287	Type 128 .	2		Rubber, cover for $\frac{7}{8}$ in. dia. hole in panel
10A/12488	Grommet:- Type 5	1		1 in. inside dia.
10A/12489	Type 6	1		Para rubber
10H/379	Holder, valve :Type 62	2		9 pin, with centre earth clip for V.R. 91
10H/274	Type 169	2		12 side connections with keyway for C.R.T., type V.C.R. 138
10A/12308	Knob:Type 34	7		Moulded black, engraved with white spot for $\frac{1}{4}$ in. spindle
10AB/1196	Type 139	2		Moulded, preset, $\frac{9}{16}$ in. ria. by $\frac{3}{4} \mathrm{in}$. long for $\frac{1}{4} \mathrm{in}$. spindle, complete with three 6 B.A. set screws
$10 \mathrm{AB} / 539$	Mask, C.R.'T., type 3	2		Moulded rubber
$10 \mathrm{AB} / 1212$	Mounting, type 190 ..	2		Potentiometer mounting comprising insulated mountings and insulated pillars
	Plug :-			
10H/528	Type 229	5		S.P. concentric G-way, H.T.
$10 \mathrm{H} / 394$	Type 201	1		
10C/1450	Resistance:- Type 1450	2	$\mathrm{R}_{29}, \mathrm{R}_{30}$	200,000 ohms, ± 10 per cent., 4. watt, carbon. These may replace resistances, type 1658 in condenser-resistance unit, type 124 , depending on cathode ray tube
10C/820	Type 926	1	R_{3}	2 megohms, 〕 10 per cent., $\frac{1}{4}$ watt carbon
10C/11667	Type 500	1	R_{4}	1,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon, insulated
10C/1023	Type 1023 .	2	$\mathrm{R}_{25}, \mathrm{R}_{26}$	$300,000$ ohms, $\rfloor 5$ per cent., $\frac{1}{4}$ watt, carbon, insulated

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Indicating unit, type 48A (contd.) Consisting of (contd.) Resistance-condenser unit, typ	162 (co		
	Fitted with:			
10C/11691	Resistance \qquad Type 525	1	R_{1}	100,000 ohms, ± 10 per cent.,
10C/11384	Type 480	1	R_{28}	1 megohm, ± 10 per cent., $\frac{1}{4}$ watt
10C/548	Type $811 .$.	1	R_{13}	270,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon, insulated
10C/553	Type 815	2	$\mathrm{R}_{15}, \mathrm{R}_{3}$	$2 \cdot 2$ megohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon, insulated
10C/1078	Type 1078	1	R_{5}	330 ohms, ± 10 per cent., $\frac{1}{4}$ watt, carbon, insulated
10C/8247	Type 137	1	R_{6}	$\begin{aligned} & 15,000 \text { ohms., } \pm 10 \text { per cent., } \\ & \frac{1}{2} \text { watt, carbon } \end{aligned}$
10C/5441	$\begin{aligned} & \text { Condenser :- } \\ & \text { Type } 2943 \end{aligned}$	1	C_{10}	$0.0004 \mu \mathrm{~F}, \pm 15$ per cent., 350 volt D.C. working, mica, moulded
10C/5468	$\stackrel{\text { or }}{\text { Type } 2969 ~ . . ~}{ }^{\text {a }}$	1	C_{10}	$0 \cdot 0004 \mu \mathrm{~F}, \pm 15$ per cent., 350 volt D.C. working, mica, moulded end wires
10C/651	Type 782 or	1	C5	$0.001 \mu \mathrm{~F}, \pm 15$ per cent., 350 volt D.C. working, mica, moulded, end wires
10C/5253	Type 2845	1	C_{5}	$0.001 \mu \mathrm{~F}, \pm 15$ per cent., 350 volt D.C. working, mica, moulded end wires
10C/24	Type 580	1	C_{2}	$0.002 \mu \mathrm{~F}, \pm 15$ per cent., 350 volt D.C. working, mica, moulded
10C/5469	$\begin{gathered} \text { or } \\ \text { Type } 2970 \end{gathered}$	1	C_{2}	end wires $0.002 \mu \mathrm{~F}, \pm 15$ per cent., 350 volt D.C. working, mica, moulded end wires
10C/11691	$\begin{aligned} & \text { Resistance :- } \\ & \text { Type 525 } \end{aligned}$	1	R_{27}	100,000 ohms, ± 10 per cent., $\frac{1}{2}$ watt, insulated
10C/548	Type 811 ..	2	$\mathrm{R}_{14}, \mathrm{R}_{20}$	270,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, insulated
10C/11667	Type 500 ..	1	R_{4}	1,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, insulated
10C/33	Type 550	2	$\mathrm{R}_{9}, \mathrm{R}_{22}$	2,700 ohms, ± 10 per cent., $\frac{1}{4}$ watt, insulated
10C/7801	Type 7801 ..	2	$\mathrm{R}_{11}, \mathrm{R}_{24}$	560,000 ohms, ± 10 per cent., $\frac{1}{8}$ watt
10C/1592	Type 1592	2	$\mathrm{R}_{25}, \mathrm{R}_{28}$	150,000 ohms, 士 10 per cent., $\frac{1}{2}$ watt, insulated
10C/546	Type 809 ..	4	$\mathrm{R}_{16}, \mathrm{R}_{17}, \mathrm{R}_{18}$,	47,000 ohms, ± 10 per cent., $\frac{1}{4}$ watt, insulated
10C/7852	Type 7852	1		1 megohm, ± 15 per cent., potentiometer, linear moulded case, plain spindle, $\frac{1}{4}$ in. dia., 0.875 in . long
10C/7854	Type 7854	3	$\mathrm{R}_{12}, \mathrm{R}_{29}, \mathrm{R}_{30}$	\ddagger megohm, ± 15 per cent., potentiometer, linear, moulded case, plain spindle, $\frac{1}{4} \mathrm{in}$. dia. 0.875 in . long

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
Indicating unit, type 48 A (contcl.) Consisting of (contd.) :-				
5C/445	- Box, fuse, type A.. ..	1		S.1'. without fuse
5C/204	Fuse, type A ..	2		20 amp. cartridge. Onc as spare in lid
5C/543	Switchbox, general purpose, type B	1		S.P. ON-OFF, moulded, flange mounting
5J/1383	Battery, grid bias, 4.5 volt	1		Socket connections. For receiver
5C/430	Block, terminal, type B :-2-way, No. 1	As requl.		Moulded, with 2 terminals and cover
5C/432	3 -way, No. 1	As roqd.		Moulded with 3 terminals and cover
10H/3092		As reqd.		To retain right-angle socket type $187,213,214$, etc.
10H/13510	Spring, plug 229 or 246, long	As reqd.		To retain socket, type 281 when capped by right-angle socket
ITEMS PECUIIAR TO BEAUFIGHTER AEROPLANES				Installation Suffix ${ }^{\text {P }}$
	Cable:-			$40 / 010$ rubber insulated metal braided. Modulator to T.3065, 3 ft .6 in . anode, 15 in . grid
51/758	H.T. uniplagmet No. 1 .	4 ft .9 in.		
5E/1328	I..T. Dumet 4	$2 \mathrm{ft} 6 in.$.		Twin $23 / 0076$ V.I.R. taper metal braided. Modulator to T. 3065 blower
5E/1349	L.'T. Dumet 19	17 ft .		Twin 110/0076 V.I.R. tapecl metal braided. 2 ft . modulator to T. 3065 (filaments). 15 ft . switchbox to block, terminal 5C/432
5E/	Duradio No. 11	28 ft		Twin coaxial. Transmitter to box, junction, type 25 Rectangular, metal with ferrule for B.A.4C
10AB/285	Box, junction, type 25 Fitted with :-	1		
10H/398	Plug, type W. 205 .	1		2-pin H.F. panel mounting. Square fiange Output: 80 volt, 500 watt, A.C. Excitation: 24 volt, D.C. Aerial matching transformer. Coaxial tubes with brackets
5U/1271	Generator, A.C. enginc-driven, type R.			
10AB/310	Impedance matching unit, type 35	2		
	Fitted with :-			
5E/	13 ft. 2 in. cable, H.F. Uniradio No. 4			Single coaxial. 50 cms . at one end; 11 ft .6 in. at other to socket
10H/701	Socket, type 213	1		S.P. coaxial, right angle for P.T.5C

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
$10 \mathrm{BB} / 289$	Items peculiar to Beaufighter aeroplanes (contd.) :Acrial, aircraft, type 19	1		Transmitting array on support tube, with cable
10BB/1435	Consists of :- Rod, acrial, type 83	1		Director on support tube
10BB/1436	Rod, aerial, type 84	1		Folded dipole 23.88 in . overall. Steel tube, $\frac{3}{8}$ in. o/d by
10BB/475	Insulator, type 165/4	1		Moulded body streamlined, 3 in. max. o/d by $5 \frac{5}{8} \mathrm{in}$. Used with type 166 series
10BB/483	Insulator, type 166/3	1		Moulded nose cap, streamlined, 3 in . max. o/d by $2 \frac{1}{8} \mathrm{in}$. Used with type 165 series
10BB/1437	Nut, round	2		Mild steel, $\frac{3}{8}$ in. dia. by $\frac{1}{2}$ in. long, tapped 4 B.A.
28C/2791	Screw, 4 B.A. by 1 in . long	2		Mild steel, cheese head, cadmium plated, A.G.S.247/26
28C/6201	Screw, 4 B. A. by 1 din. long	3		Steel, cheese head, cadmium plated, A.G.S.247/27
$\begin{aligned} & 10 \mathrm{AB} / 939 \\ & 28 \mathrm{C} / \end{aligned}$	Cover, type 95 Screw, 4 B.A. by 9.	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		Mild steel, cheese head cadmium
10BB/1438	Screw, special	2		plated, A.G.S. 247/23 modified Mild steel, $\frac{子}{4} \mathrm{in}$. dia. by $1_{5^{\frac{1}{2}}} \mathrm{in}$. long, screwed 4 B. A. by in in. long, saw-cut $\frac{1}{3 \frac{1}{2}} \mathrm{in}$. wide by
10BB/1439	Screw, special	2		16 in . deep. Cadmium plated Mild steel, $\frac{1}{4}$ in. dia. by $\frac{2}{3} \frac{1}{2}$ in. long, screwed 4 B.A. by $\frac{9}{y^{2}}$ in. long, saw-cut $\frac{1}{3}$ in. wide by $\frac{1}{16}$ in. deep, cadmium plated
10BB/1440	Spacer, type 38 ..	2		Wood, beech, $\frac{1}{2}$ in. thick by $0.997 \mathrm{o} / \mathrm{d}$ by $\frac{11}{16} \mathrm{in}$. $\mathrm{i} / \mathrm{d} \frac{3}{8} \mathrm{in}$. radius on inside surface
10BB/1441	Spacer, type 39	2		Bakelite, black, $\frac{17}{18} \mathrm{in}$. by $\frac{15}{18} \mathrm{in}$. by $\frac{3}{8} \mathrm{in}$. thick, $\frac{3}{16} \mathrm{in}$. rod on $1{ }_{16}^{16} \mathrm{in}$. centre with line of $\frac{3}{4} \mathrm{in}$. dimension slot $x_{2} \mathrm{in}$. wide on centre
10BB/1442	Support, aerial, type 12	1		
10BB/1443	Washer, rubber			
${ }_{5}^{10 \mathrm{E} /} / 1444$	Washer, rubber .	$5{ }^{1}$		
	Cable, electric, Duradio No. 11	$5 \mathrm{ft} 3 in.$.		
$10 \mathrm{AB} / 721$	Berry Wiggins compounc, No. 998	As reqd.		Plastic for filling insulators. Packed in 7 lb . tins
10AB/1124	Berry Wiggins compound, No. 667A	As reqd.		Plastic for sealing outer joints. Packed in 7 lb . tins
10BB/291	Aerial, aircraft, type 21 ..	1		Receiving array, azimuth, port, wing mounting with cable
10AB/1221	Consisting of :Clamp, type 58	1		Brass, $\frac{1}{4}$ in. thick by $1 \cdot 02$ in. dia. semi-circular, with 2-6 BA. tapped holes, $1-4$ B. A. tapped and countersunk hole and 5^{5} in. radius. For use with clamps, type 59
10AB/1222	Clamp, type 59 ..	1		with two holes 0.120 in . dia and s, in. radius
10BB/473	Insulator, type 165/2 ..	1		Moulded body streamlined 3 in. max. o/d by $5 \frac{5}{8} \mathrm{in}$. Used with type 166 series

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Aerial, aircraft, type 19 (contd.) Consisting of (contd.) :-			
10BB/361	Insulator, type 166/1	1		Moulded nose cap, streamlined, 3 in. max. o/d by $2 \frac{1}{8}$ in. Used with type 165 series
10BB/1445	Rod, aerial, type 85	2		Stcel, streamlined section, $14 \frac{3}{4} \mathrm{in}$. long
28C/2773	Screw, 4 B.A. by ${ }_{\frac{5}{8}} \mathrm{in}$. long	2		Mild steel, cheese hcarl, cadmium plated, A.G.S.247/23
28C/	Screw, 4 B.A. by $\frac{9}{16} \mathrm{in}$. long	2		Mild steel, cheese head, cadmium plated, A.G.S.247/23 modified.
28C/	Screw, 4 B.A. by $\frac{3}{8}$ in. long	1		Steel head, $0.248 \mathrm{in} .-0.242 \mathrm{in}$. dia. by 0.199 in. with slot 0.032 in. wide by 0.53 in. deep and 0.089 in . dia. hole drilled diametrically $\frac{5}{64}$ in. from underside of head
28C/6201	Screw, 4 B.A. by $1 \frac{1}{4}$ in. long	3		Steel, cheese head, cadmium plated. A.G.S.247/27
28C/2864	Screw, 6 B.A. by $\frac{1}{2}$ in. long	2		Steel, round hole, cadmium plated. A.G.S.245/31
10BB/1446	Spacer, type 40	1		Ebonite or tufnol, $\frac{1}{4}$ in. thick by $1 \cdot 124 \mathrm{in}$. o/d by $\mathrm{T}_{\mathrm{F}}^{\mathrm{T}} \mathrm{in} . \mathrm{i} / \mathrm{d}$
10BB/1447	Spacer, type 41	2		Ebonite or tufnol, $\frac{1}{4}$ in. thick by 1.028 in. o/d by $\frac{7}{16}$ in. i / d
10BB/1448	Support, aerial, type 13 .	1		
10BB/1449	Washer, rubber ..	1		$\frac{1}{16}$ in, thick by $2 \frac{7}{8}$ in. o/d by $2 \frac{9}{16}$ in. i / d
$\begin{aligned} & 5 \mathrm{E} / \\ & 10 \mathrm{H} / 701 \end{aligned}$	Cable, II.F. Uniradio No. 4 Socket, type 213	$11 \mathrm{ft} .1 \frac{1}{2} \mathrm{in}$		S.P. coaxial, right-angle cable entry
$10 \mathrm{AB} / 721$	Berry Wiggins compound No. 998	As reqd.		Plastic, for filling insulators. Packed in 7 lb . tins
$10 \mathrm{AB} / 1124$	Berry Wiggins compound No. 667A	As reqd.		Plastic, for sealing outer joints. Packed in 7 lb . tins
10BB/292	Aerial, aircraft, type 22	1		Receiving array, azimuth starboard, wing mounting, with cable
$10 \mathrm{AB} / 1221$	Consisting of :Clamp, type 58	1		Brass, $\frac{1}{4}$ in. thick by 1.02 in. dia. semi-circular, with 2-6 B.A. tapped holes, 1-4 B.A. tapped and countersunk hole and $\frac{7}{2}$ in. radius. For use with clamps, type 59
10AB/1222	Clamp, type 59 ..	1		Brass, $\frac{1}{4}$ in. thick by $\frac{7}{8}$ in. by $\frac{3}{16}$ in. with 2 holes $0 \cdot 120 \mathrm{in}$. dia. and $\frac{5}{3}$ in. radius
10BB/473	Insulator, type 165/2	1		Moulded body, streamlined, 3 -in. max. o/d by $5 \frac{5}{8}$ in. Used with type 166 series
$10 \mathrm{BB} / 361$	Insulator, type 166/1	1		Moulded nose cap, streamlined, 3 -in. max. o/d by $2 \frac{1}{8} \mathrm{in}$. Used with type 165 series
10BB/1445	Rod, aerial, type 85 ..	2		Length $144_{4}^{3} \mathrm{in}$. overall, steel, streamlined section
28C/2773	Screw, 4 B. A. by 5 in. long	2		Mild steel, cheese head, cadmium plated. A.G.S. 247/23
28C/	Screw, 4 B.A. by $\frac{9}{16} \mathrm{in}$. long	2		Mild steel, cheese head, cadmium plated. A.G.S.247/23 modified

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Aerial, aircraft, type 21 (contd.) Consisting of (contcl.) :-			
$28 \mathrm{C} /$	Screw, 4 B.A. by $\frac{3}{8} \mathrm{in}$. long	1		Steel, head 0.248-0.242 in. dia. by 0.199 in., with slot 0.032 in. wide by 0.053 in . deep and 0.089 in. dia. hole drilled diametrically $\frac{5}{64}$ in. from underside of head
28C/6201	Screw, 4 B.A. hy $1 \frac{1}{4}$ in. Jong	3		Stcol, cheese head, cadmium plated, A.G.S.247/27.
28C/	Screw, 4 B.A. by $\frac{3}{8} \mathrm{in}$. long	2		Steel, hexayon head
28C/2864	Screw, 6 B.A. by $\frac{1}{2}$ in. long	2		Steel, round head, cadmium plated. A.G.S.245/31
10BB/1446	Spacer, type 40 .			Ebonite or tufnol, $\frac{1}{4}$ in. thick by $1 \cdot 124 \mathrm{in}$. o/d by $\frac{7}{16} \mathrm{in}$. I/d
10BB/1447	Spacer, type 41	2		Ebonite or tufnol, $\frac{1}{4}$ in. thick by $1 \cdot 028$ in. o/cl by $\frac{7}{16}$ in. i / d
10BB/1450	Support, aerial, type $14 \ldots$ Washer, rubber	1		is in thick by 27 in o/d by
	Washer, rubber ..			16 in. thick by $2 \frac{7}{8}$ in. o/d by $2 \frac{9}{16} \mathrm{in} . \mathrm{i} / \mathrm{d}$
$10 \mathrm{BB} / 1430$	Washer, locking	2		Phosphor-bronze, $\frac{7}{16}$ in. square by 0.015 in. thick, 0.147 in, dia. hole drilled centrally
5E/	Cable, electric, Uniradio No. 4	$11 \mathrm{ft} .1 \frac{1}{2} \mathrm{in}$.		
10H/701	Socket, type $213 \ldots$	1		S.P. coaxial, right-angle cable entry.
$10 \mathrm{AB} / 721$	Berry Wiggins compound No. 998	As reqd.		Plastic, for filling insulators. Packed in 7 lb . tins
10AB/1124	Berry Wiggins compound No. 667A	As reqd.		Plastic, for sealing outer joints. Packed in 7 lb . tins
$10 \mathrm{BB} / 290$	Aerial system, type 25	- 1		Receiving array, elevation
$10 \mathrm{BB} / 347$	Consisting of :- Aerial, aircraft, type $62 \ldots$ Fitted reith:-	2		Wing mounting
$10 \mathrm{BB} / 342$	Rod, aerial, type 20.	1		Tength $12 \cdot 78$ in. at angle to mounting flange, streamlined section.
$10 \mathrm{BB} / 512$	Insulator, type 269/2 ..	1		Moulded body, streamlined, to fit on skin of aeroplane. 3 in. max. width by $5 \frac{1}{4} \mathrm{in}$. at base
$10 \mathrm{BB} / 517$	Insulator, type 270/1 ..	1		Moulded nose cap, streamlined, to fit on skin of aeroplane 3 in . max. width by $5 \frac{1}{\mathrm{in}}$. at base
28C/2773	Screw, 4 B. A. by $\frac{5}{8} \mathrm{inl}$. longr Screw, 4 B A by in. long	1		Steel, cheese head, A.G.S.247/23 Steel, cheese head
$\begin{aligned} & 28 \mathrm{C} / \\ & 10 \mathrm{BB} / 1430 \end{aligned}$	Screw, 4 B.A. by $\frac{3}{8}$ in. long Washer, locking. .	1		Phosphor-bronze, $\frac{7}{16}$ in. square by 0.015 in. thick, 0.147 in. dia. hole drilled centrally
$10 \mathrm{BB} / 1431$	Washer. rubleer	1		${ }_{16}^{16}$ in. thick, semi-circular. 1 ? in. inside radius by $1 \frac{7}{16} \mathrm{in}$. outside radius
$10 \mathrm{BB} / 343$	Rod, aerial, type 21	2		Length, 15.56 in. at angle to mounting flange, streamlined section
$10 \mathrm{BB} / 1432$	Washer, rubber			Streamlined base, $\frac{3}{32}$ in. thick, for use with insulators, type 269 and 270 series
28C/	Bolt, $\frac{1}{4}$ B.S.F. by $\frac{1}{2}$ in. long			Mild steel, hexagon head, cadmium plated

S.D. 0165 (1), CHAP. 1

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	ITEMS PECULIAR TO HAVOC I AND II			INSTALLATION SUFFIX Q
5E/758	Cable:- H.T., uniplugmet No. 1	4 ft .9 in .		$40 / \cdot 010$, rubber insulated, metal braided. Modulator to T.3065, 3 ft . anode ; 21 in . grip
5E/1328	L.T., Dumet 4	3 ft .		Twin $23 / .0076$ V.I.R., taped metal braided. Modulator to T. 3065 blower
5E/1349	L.T., Dumet 19	20 in .		Twin 110/.0076 V.I.R., taped, metal braided. Modulator to T. 3065 filaments
$10 \mathrm{AB} / 417$	Impedance matching unit, type 73	2		Coaxial tubes with brackets and integral plug to fit socket, type 43
5E/	Fitted with :- Cable, H.F., Uniradio No. 4. .	$19 \cdot 7 \mathrm{in} .$ $(50 \mathrm{~cm} .)$		Single, coaxial
10BB/330	Aerial, aircraft, type 41	(50 1)		Transmitting array on support tube with cable. Used on aeroplanes with normal nose.
10BB/1435	Consisting of :-Rod, aerial, type 83	1		Director on support tube
10BB/1436	Rod, aerial, type 84	1		Folded dipole, 23.88 in. overall steel tube $\frac{3}{8}$ in. o/d by 20 s.w.g.
10BB/475	Insulator, type 165/4	1		Moulded body, streamlined, 3 in. max. o/d by $5 \frac{5}{8}$ in. Used with type 166 series
10BB/483	Insulator, type 166/3 ..	1		Moulded nose cap, streamlined, 3 in. max. o/d by $2 \frac{1}{8} \mathrm{in}$. Used with type 165 series
	Cover, type 95 .	2		
10BB/1437	Nut, round .. .	2		Mild steel, $\frac{3}{8}$ in. by $\frac{1}{2}$ in. long, tapped 4 B.A.
28C/2791	Screw, 4 B.A. by 1 in. long	2		Mild steel, cheese head, cadmium plated. A.G.S.247/26
28C/6201	Screw, 4 B.A. by $1 \frac{4}{4} \mathrm{in}$. long	3		Steel, cheese head, cadmium plated. A.G.S.247/27
28C/	Screw, 4 B.A. by $\frac{9}{16}$ in. long	2		Mild steel, cheese head, cadmium plated. A.G.S. $247 / 23$ modified.
10BB/1438	Screw, special	2		Mild steel, $\frac{1}{4}$ in. dia by $1_{3^{\frac{1}{2}}}$ in. long, screwed 4 B.A. by $3^{\frac{4}{2}}$ in long, saw-cut $\frac{7}{32} \mathrm{in}$. wide by I- in deep cadmium plated
10BB/1439	Screw, special	2		Mild long, screwed 4 B.A. by in long, saw-cut $\frac{1}{3 / 2}$ in. wide by $\frac{1}{16}$ in deep, cadmium plated.
10BB/1440	Spacer, type 38 .. .	2		Wood, beech, $\frac{1}{2}$ in. thick by $0.997 \mathrm{in} .0 / \mathrm{d}$ by 11 in . i / d.
$10 \mathrm{BB} / 1441$	Spacer, type 39 ..	2		Bakelite, black, 16 in. by $\frac{15}{5}$ in. by $\frac{3}{8} \mathrm{in}$. thick, $\frac{-3}{16} \mathrm{in}$. radius on $1 \frac{1}{16}$ in. centres, with slot $\frac{1}{2}$ in. wide on centre line of $\frac{3}{4}$ in climension.

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Aerial, aircraft, type 41 (contd.) Consisting of (contd.) :-			
$\begin{aligned} & 10 \mathrm{BB} / 1451 \\ & 10 \mathrm{BB} / 1443 \end{aligned}$	Support, aerial, type 15 .. Washer, rubber	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		0.06 in. thick, semi-circular, $1 \frac{7}{7} \mathrm{in}$. radius by 1.9 in. radius.
10BB/1444	Washer, rubber	1		$\frac{1}{8}$ in. thick by $1 \frac{5}{8}$ in. o/d by $1 \frac{1}{8}$ in. $\stackrel{i}{1} \mathrm{~d}$
5 E !	Cable, electric, Duradio No. 11	35 ft .		
10AB/721	Berry Wiggins compound, No. 998	As reqd.		Plastic for filling insulators. Packed in 7 lb . tins
$10 \mathrm{AB} / 1124$	Berry Wiggins compound, No. 667A	As reqd.		Plastic for sealing outer joints. Packed in 7 lb . tins
$10 \mathrm{BB} / 1428$	or Aerial, aircraft, type 128 .	1		Transmitting array on support tube with cable, type 41. 10BB modified. Used on aeroplanes with 12-gun nose Note.-If type 128 is not available when required, type 41 should be supplied unassembled, for modifications to be made before assembly
	Consisting of :-			
10BB/1435	Rod, acrial, type 83	1		Director on support tube
10BB/1436	Rod, aerial, type 84	1		Folded dipole, $23 \cdot 88 \mathrm{in}$. overall, brass tube, $\frac{3}{8}$ in. o/d by 20 s.w.g.
$10 \mathrm{BB} / 475$	Insulator, type 165/4	1		Moulded body, streamlined, 3 in. max. o/d by 55 in. Used with type 166 series
10BB/483	Insulator, type 166/3	1		Moulded nose cap, streamlined, 3 in. max. o/d by $2 \frac{1}{8} \mathrm{in}$. Used with type 165 series
$10 \mathrm{BB} / 1437$	Nut, round	2		Mild steel, $\frac{3}{8}$ in. dia. by $\frac{1}{2} \mathrm{in}$. long, tapped 4 B.A.
28C/2791	Screw, 4 B.A. by 1 in . long	2		Mild steel, cheese head, cadmium plated. A.G.S.247/26
$\begin{aligned} & 10 \mathrm{AB} / 939 \\ & 28 \mathrm{C} / 6201 \end{aligned}$	Cover, type 95 Screw, 4 B.A. by 14 in . long	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		Steel, cheese head, cadmium plated. A.G.S.247/27
28C/2773	Screw, 4 B.A. by $\frac{5}{8} \mathrm{in}$. long	2		Mild steel, cheese head, cadmium plated. A.G.S. 247/23
$10 \mathrm{BB} / 1438$	Screw, special	2		Mild steel, $\frac{1}{4}$ in. dia. by $1 \frac{1}{32}$ in. long, screwed 4 B.A. by ith in. long, saw-cut $\overline{3}^{1} \Sigma$ in. wide by
1013B/1439	Screw, special	2		Mild steel, $\frac{1}{4}$ in. dia. by $\frac{29}{2}$ in. long, screwed 4 B.A. by 3^{5} in. long, saw-cut in. wide by $\frac{1}{16} \mathrm{in}$. deep. Cadmium plated
$10 \mathrm{BB} / 1440$	Spacer, type 38	2		Wood, beech, $\frac{1}{2}$ in. thick by 0.997 in. o/d by $\frac{11}{16} \mathrm{in}$. i / d $\frac{3}{8} \mathrm{in}$. radius on inside surface
108P/1441	Support, type 39 ..	2		Rakelite, black ${ }_{1}$ in. by $\frac{15}{1} \mathrm{in}$. by $\frac{3}{8}$ in. thick, $\frac{3}{16}$ in. radius on $1 \frac{1}{16} \mathrm{in}$. centres with slot $\frac{\mathrm{in}}{}$ wide on centre line of $\frac{3}{4} \mathrm{in}$. dimension

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Aevial, aircraft, type 128 (contd.) Consisting of (contd.) :-			
10BB/1462	Support, aerial, type 20,..	1		
10BB/1449	Washer, rubber . . .	1		$\frac{1}{16}$ in. thick by 27 in . o/d by
10BB/1444	Washer, rubber	1		$\frac{1}{8} \mathrm{in}$. thick by $1 \frac{5}{8} \mathrm{in}$. o/d by $\frac{1}{6} \mathrm{in}$.
5E/	Cable, electric, Duradio No. 11.	35 ft .		1/d.
10AB/721	Berry Wiggins compound No. 998	As reqd.		Plastic for filling insulators. Packed in 7-lb. tins
$10 \mathrm{AB} / 1124$	Berry Wiggins compound No. 667A	As req̧d.		Plastic for filling insulators. Packed in 7-1b. tins
10BB/341	Aerial system, type 26 Consisting of :-	1		Receiving array, elevation
10BB/347	Aerial, aircraft, type 62.			Wing mounting
$10 \mathrm{BB} / 342$	Fitted with :Rorl aerial, type 20	1		Length 12.78 in. at angle to mounting flange, streamlined section
$10 \mathrm{BB} / 512$	Insulator, type 269/2	1		Moulded body, streamlined, to fit on skin of aircraft 3 in . max. width by $5 \frac{1}{4}$ in. at base
$10 \mathrm{BB} / 517$	Insulator, type 270/1	1		Moulded nose cap, streamlined to fit on skin of aircraft. 3 in . max. width by 2 in . at base. Used with type 269 series
$\begin{aligned} & 28 \mathrm{C} / 2773 \\ & 28 \mathrm{C} / 2 \end{aligned}$	Screw, 4 B.A. by $\frac{5}{8} \mathrm{in}$. long Screw, 4 BA. by 8 in. long	1		Steel, cheese head, A.G.S. 247/23. Steel, hexagon head
$10 \mathrm{BB} / 1430$	Washer, locking. . ..	1		Phosphor bronze, $\frac{7}{16}$ in. square by 0.15 in . thick; 0.147 in . dia. hole drilled centrally
10BB/1431	Washer, rubber ..			${ }_{16} \frac{1}{6}$ in. thick, semi-circular. $13_{3}^{9} \mathrm{in}$. inside radlius by $1 \frac{1}{2} \mathrm{in}$. outside radius
$10 \mathrm{BB} / 348$	Aerial, aircraft, type 63			Wing mounting
$10 \mathrm{BB} / 344$	Fitted with :Rod, aerial, type 22 ..	1		Length $12 \cdot 78$ in. at angle to mounting flange, streamlined section
$10 \mathrm{BB} / 512$	Insulator, type 269/2 ..	1		Moulded body, streamlined to fit on skin of aircraft, 3 in. max. width by 2 in . at base. Used with type 269 series
$28 \mathrm{C} / 2773$ 28 C		1		Steel, cheese head, A.G.S.247/23 Steel, hexagon head
$\begin{aligned} & 28 \mathrm{C} / \\ & 10 \mathrm{BB} / 1430 \end{aligned}$	Screw, 4 R.A. by $\frac{3}{}$ in long Washer, locking. . .-	1		Steel, hexagon head Phosphor bronze, $\frac{7}{16} \mathrm{in}$. square by 0.015 in. thick by 0.147 in. dia. hole drilled centrally
108B/1431	Washer, rubber	1		$\frac{1}{16}$ in, thick, semi-circular, $1 a^{4}$ in. inside radius by $1_{\mathrm{i}}^{\mathrm{i}} \mathrm{i}$ in. outside radius
$10 \mathrm{BB} / 345$	Rod, aerial, type 23 .	1		Length 13.4 in. at angle to mounting flange, streamlined section
$10 \mathrm{BB} / 346$	Rod, aerial, type 24	1		Length 13.4 in. at angle to mounting flange, streamlined section
10BB/1432	Washer, rubber .. .	1		Streamlined base $\frac{3}{8}$ in. thick, for use with insulators, type 269 and 270 series

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Aerial system, type 26 (contd.) Consisting of (contd.) Aerial, aircyaft, type 63 (contd.) Fitted with (contd.) :-			
28C/	Bolt, $\frac{1}{4}$ in. B.S.F. by $\frac{1}{2}$ in. long.	8		Mild steel, hexagon head, cadmium plated
28C/3099	Washer, spring, single ..	8		Steel, 0.27 in. dia. by 16 s.w.g. AGS. $162 / \mathrm{D}$
28C/6201	Screw, 4 B.A. by $1 \frac{1}{4}$ in. long	4		Steel, cheese head, cadmium plated. A.G.S.247/27
10AB/721	Berry Wiggins compound No. 998.	As reqd.		Plastic for filling insulators. Packed in 7-1b. tins
$10 \mathrm{AB} / 1124$ $10 \mathrm{BB} / 736$	Berry Wiggins compound No. 667/A.	As reqd.		Plastic for sealing outer joints. Packed in 7-1b. tins
$10 \mathrm{BB} / 736$	Aerial system, type 44 .	2		Receiving array, azimuth, complete with cable. Used port and starboard
10BB/370	$\begin{aligned} & \text { Consisting of :-- } \\ & \text { Aerial, aircraft, type } 43 \ldots \end{aligned}$	1		Dipole on streamlined insulator with support tube and mounting plate
$10 \mathrm{BB} / 1433$	Director, acrial, type 1	1		Tubular section, streamlined T-shape with mounting and gusset plates. Bright cadmium plated
10BB/1434	Washer .	1		Mild steel, $2 \frac{1}{2}$ in. o/d by $1 \frac{1}{8} \mathrm{in}$. i/d by $\frac{33}{64}$ in. thick with 8 holes $3^{\frac{7}{2}} \mathrm{in}$. dia., equally spaced on 2 in. P.C.D. Bright cadmium plated
$\begin{aligned} & 28 \mathrm{C} / 2820 \\ & 28 \mathrm{C} / \end{aligned}$	Screw, 2 B.A. by $\frac{5}{8}$ in. long Nut, 2 B.A.	8		Steel, csk. head, cadmium plated
28C/	Washer, 2 B.A.	8		
10BB/1463	Aerial, aircraft, type 43 Consisting of :- Feeder, aerial, type 61 Fitted with:-	1		
$5 \mathrm{E} /$	30 ft. 2 in. cable H.F. uniradio No. 4.			
10AB/1223	Clamp, type $60 . .$.	1		Brass, $\frac{1}{4}$ in. thick by 0.99 in. dia. semi-circular with 2-6 B.A. tapped holes, 1-4 B.A. tapped and csk. hole and $\frac{5}{32}$ in. radius
10AB/1224	Clamp, type $61 .$.	1		Brass, \ddagger in. thick by $\frac{23}{10} \mathrm{in}$. by $\frac{3}{18}$ in. with 2 holes, $0 \cdot 120 \mathrm{in}$. dia. and $\frac{5}{32}$ in. radius
28C/2864	Screw, 6 B.A., by $\frac{1}{2}$ in. long.	1		Steel, round head, cadmiumplated. A.G.S.245/31
28C/2121	Screw, 4 B.A. by $\frac{8}{8}$ in. long.	1		Brass, csk. head, dull nickel plated
10H/701 $10 \mathrm{BB} / 1452$	Socket, type 213 Spacer, type 42	2		S.P. coaxial, right-angle entry Ebonite or tufnol, $\frac{1}{4}$ in. thick by
$10 \mathrm{BB} / 1452$ $10 \mathrm{BB} / 1440$	Spacer, type 42 Spacer, type 38	2		$\frac{5}{16}$ in. o/d by $\frac{27}{64} \mathrm{in}$. i/d Wood, beech, $\frac{1}{2}$ in. thick by 0.997 in . o/d by 17 in i/d, $\frac{7}{8} \mathrm{in}$. radius on inside surface
10BB/502	Insulator, type 268/2	1		Moulded body, streamlined, 3 in. max. o/d by $6 \frac{7}{8} \mathrm{in}$. Used with type 166 series
$10 \mathrm{BB} / 484$	Insulator, type 166/4	1		Moulded, nose cap, streamlined, 3 in . max. o/d by $2 \frac{1}{8} \mathrm{in}$. Used with type 268 series.

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
	Aerial system, type 44 (contd.) Consisting of (contd.) Aerial, aircraft, type 43 (contd.) Consisting of (contd.) :-			
$\begin{aligned} & 10 \mathrm{BB} / 1437 \\ & 28 / 5913 \end{aligned}$	Nut, round Nut, Simmonds 2 B.A.	2		Mild steel, $\frac{8}{8}$ in. dia. by $\frac{1}{2} \mathrm{in}$. long tapped 4 B.A. Thin hexagon
10BB/1453	Rod, aerial, type 86 .	1		Folded dipole. Brass tube $\frac{3}{8}$ in. o/d by 20 s.w.g. 27.95 in. overall
28C/2790	Screw, 2 B.A. by 1 in. long.	1		Mild steel, cheese head, cadmium plated
28C/2785	Screw, 4 B.A. by $\frac{7}{8}$ in. long.	2		Mild steel, cheese head, cadmium plated
28C/6201	Screw, 4 B.A. by $1 \frac{1}{4}$ in. long.	3		Steel, cheese head, cadmium plated
28C/2791	Screw, 4 B.A. by 1 in. long.	2		Mild steel, cheese head, cadmium plated
10BB/1454	Spacer, type 43 .	2		Black bakelite, $\frac{3}{4} \mathrm{in}$. by $1 \frac{1}{16} \mathrm{in}$. by 0.375 in. grooved $\frac{3}{16}$ in. rod on $1 \frac{3}{16}$ in. centres
10BB/1455	Stud, taper ..			Mild steel, $2 \frac{3}{4}$ in. overall. $\frac{1}{2}$ in. straight $0 \cdot 311-0 \cdot 310$ in. dia. tapering to 0.185 in . in $1 \frac{3}{8} \mathrm{in}$. Screwed 2 B.A. by $\frac{1}{2}$ in. long. Saw slot $\frac{6 \pi}{6 / 4}$ in. wide by $\frac{1}{18}$ in. deep, cadmium plated
10BB/1456	Support, aerial, type 16	1		0.06 in. thick, semi-circular, $1_{16} \frac{7}{} \mathrm{in}$. radius by $1_{32}^{9} \mathrm{in}$. radius
10BB/1443	Washer, rubber	1		Steel, 0.19 in . i/d by 0.50 in . o/d by 0.5 in. thick, cadmium plated. A.G.S.160/C
28C/3071	Washer	1		Steel, 0.19 in. i/d by 0.50 in . o/d by 0.5 in. thick, cadmium plated
28C/	Washer, 2 B.A. ..	1		Mild steel, $\frac{9}{10} \mathrm{in}$. i / d by $\frac{3}{\frac{3}{6}} \mathrm{in}$. o/d by $\frac{1}{18}$ in. thick, cadmium plated
10AB/715	Berry Wiggins compound No. 998	As reqd.		Plastic, for filling insulators. Packed in 7-lb. tins
10AB/735	Berry Wiggins compound No. 667 A	As reqd.		Plastic, for sealing outer joints. Packed in 7-lb. tins
10BB/1487	Fairing, support tube ..	1		To streamline supports, aerial, type 16
10H/13252	```Connector set, type ARI/5003 and 5010/Q Comprising :- Connector:--```	$\begin{gathered} 1 \\ \text { if reqd. } \end{gathered}$		
$10 \mathrm{H} / 1074$	Type 384/2	1		Sextomet 4, 20 ft .0 in ., fitted with 1 socket W. 154, $10 \mathrm{H} / 408$
$10 \mathrm{H} / 1075$	Type 385/2	1		4 -way cable-form No. 2. $\frac{1}{4}$ in. conduit, 2 ft .7 in., fitted with 1 socket. W. $150.10 \mathrm{H} / 404$
10H/1077	Type 387/2	1		4 -way cable-form No. 2. $\frac{1}{4} \mathrm{in}$. conduit, 7 ft .0 in., fitted with 2 sockets W. 150. $10 \mathrm{H} / 404$
10H/1078	Type 388/2 ..	1		6 -way cable-form No. 7. $\frac{3}{8} \mathrm{in}$. conduit, 4 ft .10 in ., fitted with 2 sockets W. 160, 10H/414

S.D. 0165 (1), CHAP. 1

Ref. No.

5E/1348

518/1349
$5 \mathrm{U} / 1270$
$10 \mathrm{AB} / 577$

10A/11206
$10 \mathrm{AB} / 265$
10A/12349
10A/12350
$10 \mathrm{H} / 1837$
$10 \mathrm{H} / 1838$
$10 \mathrm{H} / 1839$

10H/1840

10H/1848

10H/1850
$10 \mathrm{H} / \mathrm{l} 851$

10H/1852
10H/1849

10H/13348

10H/13356

10H/13364

| Cable, L.T., Dumet $7 \ldots$ | 15 ft .0 in. |
| :--- | :--- | :--- |
| Cable, L.T. Dumet 19 | $4 \mathrm{ft} 0 in.$. |

Gencrator,
type IR
Impedance matching unit, $\quad 2$ type 92
Mounting, type 11 4

Mounting, type 79 1
Mounting, type 46 1
Mounting, type 47
Connector set, type ARI/5003/AY Comprising:-

Connector, type $384 / 3$	\ldots	1
Connector, type $385 / 3$	\ldots	

Connector, type $387 / 3$

Connector, type 388/4

Connector, type 390/3
$\begin{array}{ll}\text { Connector, type } 395 / 3 & \ldots \\ \text { Connector, type } 904 / 4 & \text {. }\end{array}$
1

Connector, type 905/4	\ldots	1
Connector, type $906 / 4$	\ldots	1
Connector, type $907 / 4$	\ldots	1

T'win $40 / \cdot 0076$, V.I.R. Taped, metal braided. Pilot's switch wiring
Twin 110/•0076, V.I.R. Taped, metal braided. Modulator to 1.3065A. (Filaments)

Output:-80 volts, A.C., 500 watts. Excitation :- 12 volts, J.C.

Coaxial tubes with brackets. Type $35,10 \mathrm{AB} / \mathbf{3 1 0}$, less cable and socket
Load, 4 lb., rubber, with square pedestal holder. For indica ting unit.

Sextomet 4, length $25 \mathrm{ft}$.0 in . Fitted with:-

1 socket, W. 154, $10 \mathrm{H} / 408$
4 -way cable form No. 2.1 in. conduit, 3 ft . 0 in., fitted with 1 socket, W. $150,10 \mathrm{H} / 404$
4 -way cable form No. 2. $\frac{1}{4}$ in. conduit, 3 ft .0 in., fitted with 2 sockets, W. $150,10 \mathrm{H} / 404$
6 -way cable form No. 7. $\frac{3}{8}$ in. conduit, 4 ft .2 in., fitted with 2 sockets, W. $160,10 \mathrm{H} / 414$
Uniradio No. 6, 4 ft .4 in ., fitted with 2 sockets, type 187, 10H/529, 2 grips, cable, 10H/1774. Coded Orange
Uniradio No. 6, 3 ft .8 in., fitted with 2 sockets, type 187, 10H/529, 2 grips, cable, 10H/1774. Coded Orange
Dumet 19, 11 ft .0 in., fitted with 1 socket, W. 165, 10H/419
Uniradio No. 6, 2 ft .3 in ., fitted with 2 sockets, type 187 , $10 \mathrm{H} / 529,2$ grips, cable, 10H/1774. Coded Red Formerly type 389/4 with same Ref. No.
Uniradio No. 6, 2 ft .3 in ., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529,2$ grips, cable, $10 \mathrm{H} / 1774$. Coded Green
Uniradio No. 6, 2 ft. 3 in., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529,2$ grips, cable, $10 \mathrm{H} / 1774$. Coded White
Uniradio No. 6, 2 ft. 3 in., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529,2$ grips, cable, 10H/1774. Coded Yellow

S.D. 0165 (1), CHAP. 1

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks.
	Connector set, type ARI/5003/U (contd.)			
10H/1979	Comprising (contd.) :Connector, type 391/4 ..	1		Uniradio No. 6, 9 ft. 2 in., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529,2$ grips, cable, 10H/1774, coded Orange
10H/1980	Connector, type 395/4	1		Dumet $19,2 \mathrm{ft} .8$ in., fitted with 1 socket, W.165, 10H/419
10H/1977	Connector, type 904/5	1		Uniradio No. 6, 2 ft. 9 in., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529$, 2 grips, cable, 10H/1774. Coded Red. Formerly type $389 / 5$ with same Ref. No.
10H/13349	Connector, type 905/5	1		Uniradio No. 6, 2 ft .9 in., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529,2$ grips, cable, $10 \mathrm{H} / 1774$, coded Green
10H/13357	Connector, type 906/5	1		Uniradio No. 6, 2 ft .9 in., fitted with 2 sockets, type 187, 10H/529, 2 grips, cable, $10 \mathrm{H} / 1774$, coded White
10H/13365	Connector, type 907/5	1		Uniradio No. 6, 2 ft. 9 in., fitted with 2 sockets, type 187, $10 \mathrm{H} / 529,2$ grips, cable, $10 \mathrm{H} / 1774$, coded Yellow
10H/1981	Connector, type 910/2	1		Uniradio No. 4, 11 ft .0 in , fitted with 2 sockets, type 213, 10H/701, 2 grips, cable, 10H/1774, coded Red. Formerly type 298/2 with same Ref. No.
10H/13378	Connector, type 911/2	1		Uniradio No. 4, 11 ft .0 in ., fitted with 2 sockets, type 213 , $10 \mathrm{H} / 701,2$ grips, cable, 10H/1774, coded Green
10H/13385	Connector, type 912/2	1		Uniradio No. 4, 11 ft .0 in., fitted with 2 sockets, type 213, $10 \mathrm{H} / 701,2$ grips, cable, $10 \mathrm{H} / 1774$, coded White
10H/13388	Connector, type 913/2	1		Uniradio No. 4, 11 ft .0 in., fitted with 2 sockets, type 213 , 10H/701, 2 grips, cable, $10 \mathrm{H} / 1774$, coded Yellow
	I'TEMS PECULIAR TO ANSON AIRCRAFT			INSTALLATION SUFFIX AJ (12 VOLT, D.C. SUPPLY)
$10 \mathrm{BB} / 357$	Acrial, aircraft, type 97 ...	1		Transmitting array, on support tube
$10 \mathrm{BB} / 358$	Aerial, aircraft, type 98 ..	1		Rcceiving array, azimuth, port, wing mounting
$10 \mathrm{BB} / 359$	Aerial, aircraft, type 99 .	1		Receiving array, azimuth, starboard, wing mounting
10BB/356	Aerial system, type 79	1		Receiving array, elevation
10AB/1144	Box, junction, type 54	1		Metal, rectangular, $6 \frac{8}{8}$ in. by $1 \frac{7}{8} \mathrm{in}$. by $1 \frac{1}{4} \mathrm{in}$. deep
10H/528	Fitted with:- Plug, type 229	5		S.P. coaxial, panel mounting, single-ended

Ref. No.	Nomenclature	Quantity	Ref. in fig.	Remarks
10AB/1145	Box, junction, type 55	1		Metal, $7 \cdot 3$ in. by $5 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{4} \mathrm{in}$. deep
$\begin{aligned} & 10 \mathrm{H} / 528 \\ & 5 \mathrm{E} / 758 \end{aligned}$	Plug, type 229 Cable, H.T., uniplugmet No. 1.	$\stackrel{16}{8 \mathrm{ft} .6 \mathrm{in} .}$		Mod. unit to T. $3065 \mathrm{~A}, 4 \mathrm{ft} .4 \mathrm{in}$. anode. 4 ft. 2 in. grid
5E/1328	Cable, L.T., dumet 4	3 ft .8 in.		Mod. unit to T.3065A (blower)
5E/1349	Cable, L.T., dumet 19 . ${ }^{\text {a }}$.	4 ft .2 in .		Mod. unit to T.3065A (filaments)
$5 \mathrm{U} / 1270$	Gencrator, A.C., engine-driven, type R	1		Output: 80 volts, 500 watts, A.C. Excitation : 12 volts, D.C.
10A/11206	Mounting, type 11	12		Load, 4 lb., rubber, with square pedestal holder. For indicating units
$\begin{aligned} & 10 \mathrm{AB} / 265 \\ & 10 \mathrm{AB} / 1143 \end{aligned}$	$\begin{array}{lll}\text { Mounting, type } 79 & \text {.. } & \text {.. } \\ \text { Mounting, type } 183 & . & .\end{array}$	1		Sheet metal tray, $4 \frac{3}{4} \mathrm{in}$. by 10 in . For power unit, type 77A
10A/9334	Fitted with:- Mounting, type 4 ..	2		Load, 6 lb ., rubber, with square pedestal holder
10A/11206	Mounting, type 11 .	2		Load, 4 lb., rubber, with square pedestal holder
10A/12349	Mounting, type 46	1		
10A/12350	Mounting, type 47 .	1		
10KB/472	Power unit, type 77A . Fitted with :-	1		Type 77, in metal case, $4 \frac{3}{4}$ in. by 10 in. by 7 名 in. H. Supplementary supply for 2 nd and 3rd indicating units
10H/391	Plug, W. 198 . . .	1		4 -pole, panel mounting, square flange
10H/394	Plug, W. 201	2		6 -pole, H.T., panel mounting, square flange
$10 \mathrm{~KB} / 140$	Power unit, type 77 Consisting of :-	1		
$\begin{aligned} & 10 \mathrm{~A} / 12390 \\ & 10 \mathrm{C} / 2592 \end{aligned}$	Cap, valve, type 4. Choke, L.F., type 87	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		Smoothing
10C/2590	Condenser:Type 1228	1		$0.01 \mu \mathrm{~F} . \pm 10$ per cent. 3,000 volts, D.C., working. paper, tubular
10C/2037	Type 941 .	2		$0.5 \mu \mathrm{~F} . \pm 15$ per cent., 450 volts, D.C., working, paper, tubular
10C/1450	Resistance, type 1450	2		200,000 ohms ± 10 per cent., t watt
$\begin{aligned} & 10 \mathrm{~KB} / 141 \\ & 10 \mathrm{H} / 483 \end{aligned}$	Transformer, type 288 Holder, valve, type 69	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		Mains, with tag plate assembled $\frac{1}{6}$ in. by $2 \frac{1}{4}$ in. by $4 \frac{1}{4} \mathrm{in}$. bakelite panel fitted with :-l-4-pin valve holder 1-8-pin valve holder
$\begin{aligned} & 10 \mathrm{E} / 100 \\ & 10 \mathrm{E} / 157 \end{aligned}$	Valve VU. 134 . . Valve UU. 4 .	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
10H/13178	Connector set, type ARI/5003 and 5010/AJ Comprising:-			
10H/13395	Connector, type 384/7	1		Sextomet 4, 13 ft .6 in., fitted with 1 socket, W. $154,10 \mathrm{H} / 408$
10H/1974	Connector, type 385/4	1		4 -way cable form No. 2, $\frac{1}{}$ in. conduit, 1 ft .3 in ., fitted with 1 socket, W. $150,10 \mathrm{H} / 404$
10H/13396	Connector, type 386/1.	1		4 -way cable, form No. 2, in. conduit, 6 ft .0 in., fitted with 2 sockets, W. $150,10 \mathrm{H} / 404$

